To-Do List

  • code update: to-do list (12/18)
  • get ratio figures online (12/18)
  • add description to ratio figs (12/18)
  • notable progress on 'Results' (12/19)
  • finish ModYY description (12/20)

02/15-02/19

All sections and subsections can be shown/hidden by clicking on the header.

1. Inner Grid (Forces) contract «

Two stars orbit about some point $\mathbf{R}_\text{cm}$ with angular velocity $\mathbf{\Omega} = \Omega\ \hat{z}$. For a frame co-rotating about one of the stars rather than about $\mathbf{R}_\text{cm}$, a gas element in this frame will experience a force $\mathbf{f}_r$ of $$ \mathbf{f}_r = \mathbf{g} - 2 \mathbf{\Omega} \times \mathbf{u} - \mathbf{\Omega} \times \mathbf{\Omega} \times (\mathbf{r}-\mathbf{R}_\text{cm}) $$ The primary star is placed at grid center with the secondary at $\mathbf{r}_S = R_\text{sep}\ \hat{x}$

Since the code runs in spherical coordinates, $\mathbf{f}_r$ is best calculated by converting $\mathbf{g}$ and $\mathbf{\Omega}$ to spherical coordiantes. This is done using the following transformation: $$ \left( \begin{array}{c} \hat{r} \\ \hat{\theta} \\ \hat{\phi} \end{array} \right) = \left( \begin{array}{ccc} \sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta \\ \cos\theta\cos\phi & \cos\theta\sin\phi & -\sin\theta \\ -\sin\phi & \cos\phi & 0 \end{array} \right) \left( \begin{array}{c} \hat{x} \\ \hat{y} \\ \hat{z} \end{array} \right) $$

1.1 Converting $\mathbf{g}$ to spherical expand «

1.2 Converting $\mathbf{\Omega}$ to spherical expand «

1.3 Centrifugal Force expand «

1.4 Translational Force expand «

1.5 Coriolis Force expand «

1.6 Total Forces contract «

$\mathbf{g}$ on the Yin and Yang grids. note: $\left|\mathbf{r}-\mathbf{R}_\text{sep}\right|^3$ is still correct on the Yang grid as $\mathbf{R}_\text{sep}$ changes $$ ^n \mathbf{g} = \frac{GM_P}{r^2} \left( \begin{array}{c} \kappa(r) \\ 0 \\ 0 \end{array} \right) - \frac{GM_S}{\left|\mathbf{r}-\mathbf{R}_\text{sep}\right|^3} \left( \begin{array}{c} r - R_\text{sep} \sin\theta \cos\phi \\ - R_\text{sep} \cos\theta \cos\phi \\ R_\text{sep} \sin\phi \end{array} \right) $$ $$ ^g \mathbf{g} = \frac{GM_P}{r^2} \left( \begin{array}{c} \kappa(r) \\ 0 \\ 0 \end{array} \right) - \frac{GM_S}{\left|\mathbf{r}-\mathbf{R}_\text{sep}\right|^3} \left( \begin{array}{c} r + R_\text{sep} \sin\theta \cos\phi \\ R_\text{sep} \cos\theta \cos\phi \\ - R_\text{sep} \sin\phi \end{array} \right) $$ Pseudoforce $\mathbf{a}$ on the Yin and Yang grids $$ ^n \mathbf{a} = r\Omega^2 \left( \begin{array}{c} \sin^2\theta \\ \sin\theta \cos\theta \\ 0 \end{array} \right) - R_\text{cm}\Omega^2 \left( \begin{array}{c} \sin\theta \cos\phi \\ \cos\theta \cos\phi \\ -\sin\phi \end{array} \right) - 2 \Omega \left( \begin{array}{c} -w \sin\theta \\ -w \cos\theta \\ v \cos\theta + u \sin\theta \end{array} \right) $$ $$ ^g \mathbf{a} = r\Omega^2 \left( \begin{array}{c} \cos^2\theta \sin^2\phi + \cos^2\phi \\ - \sin\theta \cos\theta \sin^2\phi \\ - \sin\theta \sin\phi \cos\phi \end{array} \right) + R_\text{cm}\Omega^2 \left( \begin{array}{c} \sin\theta \cos\phi \\ \cos\theta \cos\phi \\ -\sin\phi \end{array} \right) - 2 \Omega \left( \begin{array}{c} w \cos\theta \sin\phi - v \cos\phi \\ u \cos\phi - w \sin\theta \sin\phi \\ v \sin\theta \sin\phi - u \cos\theta \sin\phi \end{array} \right) $$

1.7 x-Directional Sweep expand «

1.8 y-Directional Sweep expand «

1.9 z-Directional Sweep expand «

2. Outer Grid (Building Inner Boundary) contract «

The boundary code has 4 steps.

  1. Transform $\mathbf{u}$ to global cartesian velocity in an inertial frame,
  2. Find location on inner grid for each boundary coordinate,
  3. Interpolate all data values for each coordinate,
  4. Transform $\mathbf{u}$ back to local spherical velocity.

The term 'global' means independent of grid. Velocities are handled in global cartesian for ease of interpolation and for ease of converting back to spherical when considering the time-dependent rotational vector.

2.1 Velocity Transformation expand «

2.2 Determining Boundary Location expand «

2.3 Interpolating Boundary Values expand «

2.4 Velocity Transformation (again) expand «

3. Outer Grid (Using Inner Boundary) contract «

The inner grid is run to a quasi-steady state so that time-dependence of the outer grid's inner boundary may be simplified by using a snapshot of the inner grid data. For each angular zone (j,k), the code loads a 'ring' of data ranging $0$ to $2\pi$, each point of which contains six ghost zones.

The location $\alpha$ on this ring is determined by the simulation time such that $\alpha = \Omega t$, and all boundary values are generated via interpolation of the two nearest zones.


      alpha = omega * time
      do while (alpha > 2.0*pi)
         alpha = alpha - 2.0*pi
      end do

      nBelow = 1 + (alpha - angle(1))/(angle(2)-angle(1))
      nAbove = 1 + nBelow

      ! adjust for periodic boundary
      if (nBelow == 0) then
         a1 = angle(nAbove)
         a2 = a1 - (angle(2)-angle(1))
         nBelow = amax
      else if (nAbove == amax+1) then
         a2 = angle(nBelow)
         a1 = a2 + (angle(2)-angle(1))
         nAbove = 1
      else
         a2 = angle(nBelow)
         a1 = angle(nAbove)
      end if

      ! interpolation coefficients
      n1 = (a1-alpha)/(angle(2)-angle(1))
      n2 = (alpha-a2)/(angle(2)-angle(1))
   

Once interpolation coefficients are calculated, the code simply loops through each angular zone and populates the boundary zones as follows. (Here, rin(i,j,k) is the $i$-th ghost zone for the ($j$,$k$) coordinate.)


      do k = 1, ks
         do j = 1, js
            if (ongrid(jcol*js+j,krow*ks+k) < 2) then
               do nv = 1, nvars
                  val = n2*iBound(nv,nAbove,i,j,k) + n1*iBound(nv,nBelow,i,j,k)

                  if (nv == 1) rin(i,j,k) = val
                  if (nv == 2) pin(i,j,k) = val
                  if (nv == 3) uin(i,j,k) = val
                  if (nv == 4) vin(i,j,k) = val
                  if (nv == 5) win(i,j,k) = val
               end do
            end if
         end do
      end do
   

4. Outer Grid (Forces) contract «

The frame in the outer grid is no longer rotating, but it is still translating such that the center of the grid is positioned at the progenitor. A gas element in such a frame will experience a force $$ \mathbf{f}_o = \mathbf{g} + \mathbf{\Omega} \times \mathbf{\Omega} \times \mathbf{R}_\text{cm} $$ where $\mathbf{R}_\text{cm}$ and $\mathbf{R}_\text{sep}$ both follow along the unit vector $\hat{n}(t) = \cos\left(\Omega t\right)\ \hat{i} + \sin\left(\Omega t\right)\ \hat{j}$.

4.1 Converting $\mathbf{f}_o$ to spherical expand «

We first convert a vector $\hat{n} = n_X\ \hat{i} + n_Y\ \hat{j} + n_Z\ \hat{k}$ to spherical. $$ \left( \begin{array}{ccc} \sin\theta \cos\phi & \sin\theta \sin\phi & \cos\theta \\ \cos\theta \cos\phi & \cos\theta \sin\phi & -\sin\theta \\ -\sin\phi & \cos\phi & 0 \end{array} \right) \left( \begin{array}{c} n_X \\ n_Y \\ n_Z \end{array} \right) = \left( \begin{array}{c} n_X\sin\theta\cos\phi + n_Y\sin\theta\sin\phi + n_Z\cos\theta \\ n_X\cos\theta\cos\phi + n_Y\cos\theta\sin\phi - n_Z\sin\theta \\ -n_X\sin\phi + n_Y\cos\phi \end{array} \right) $$ For the Yin grid, $\hat{u}(t) = \cos\Omega t\ \hat{i} + \sin\Omega t\ \hat{j}$, and for the Yang grid $\hat{u}(t) = \sin\Omega t\ \hat{k} - \cos\Omega t\ \hat{i}$. $$ ^n \hat{n}(t) = \left( \begin{array}{c} \sin\theta\cos\phi\cos\Omega t + \sin\theta\sin\phi\sin\Omega t \\ \cos\theta\cos\phi\cos\Omega t + \cos\theta\sin\phi\sin\Omega t \\ - \sin\phi\cos\Omega t + \cos\phi\sin\Omega t \end{array} \right) $$ $$ ^g \hat{n}(t) = \left( \begin{array}{c} \cos\theta\sin\Omega t - \sin\theta\cos\phi\cos\Omega t \\ -\sin\theta\sin\Omega t - \cos\theta\cos\phi\cos\Omega t \\ \sin\phi\cos\Omega t \end{array} \right) $$ Gravity due to the secondary is then $$ \mathbf{g}_S = -\frac{GM_S}{\left|\mathbf{r}-R_\text{sep}\ \hat{n}\right|^3} \left(\mathbf{r}-R_\text{sep}\ \hat{n}\right) $$ and the translational force $\mathbf{\Omega}\times\mathbf{\Omega}\times\mathbf{R}_\text{cm}$ is $$ \mathbf{\Omega}\times\mathbf{R}_\text{cm} = R_\text{cm}\Omega \left| \begin{array}{ccc} \hat{r} & \hat{\theta} & \hat{\phi} \\ \cos\theta & -\sin\theta & 0 \\ n_r & n_\theta & n_\phi \end{array} \right| = \left( \begin{array}{c} -n_\phi \sin\theta \\ -n_\phi \cos\theta \\ n_\theta\cos\theta + n_r\sin\theta \end{array} \right) $$ $$ \mathbf{\Omega}\times\mathbf{\Omega}\times\mathbf{R}_\text{cm} = R_\text{cm}\Omega^2 \left| \begin{array}{ccc} \hat{r} & \hat{\theta} & \hat{\phi} \\ \cos\theta & -\sin\theta & 0 \\ -n_\phi \sin\theta & -n_\phi \cos\theta & n_\theta\cos\theta + n_r\sin\theta \end{array} \right| = -R_\text{cm}\Omega^2 \left( \begin{array}{c} n_\theta\sin\theta\cos\theta + n_r\sin^2\theta \\ n_\theta\cos^2\theta + n_r\sin\theta\cos\theta \\ n_\phi \end{array} \right) $$ $$ \mathbf{\Omega}\times\mathbf{\Omega}\times\mathbf{R}_\text{cm} = -R_\text{cm}\Omega^2 \left(\begin{array}{c} \sin\theta(\cos\phi\cos\Omega t + \sin\phi\sin\Omega t) \\ \cos\theta(\cos\phi\cos\Omega t + \sin\phi\sin\Omega t) \\ -\sin\phi\cos\Omega t + \cos\phi\sin\Omega t \end{array}\right) $$ $$ \mathbf{\Omega}\times\mathbf{R}_\text{cm} = R_\text{cm}\Omega \left| \begin{array}{ccc} \hat{r} & \hat{\theta} & \hat{\phi} \\ \sin\theta\sin\phi & \cos\theta\sin\phi & \cos\phi \\ . & . & . \end{array} \right| $$


   do n = nmin-4, nmax+5
      dSx = xf(n)*stheta*cphi - sep
      dSy = xf(n)*stheta*sphi
      dSz = xf(n)*ctheta
      radS = sqrt(dSx**2+dSy**2+dSz**2)

      grav(n) = + GMP / xf(n)**2 * kap(n) &
                - GMS / radS**3  * (xf(n)+sep*stheta*cphi)

      fict(n) = + (w(n)*w(n)+v(n)*v(n))/xf(n) &
                - rcm*omega**2*(stheta*cphi*uVx + stheta*sphi*uVy)
   end do
   

   do n = nmin-4, nmax+5
      dSx = xf(n)*stheta*cphi - sep
      dSy = xf(n)*stheta*sphi
      dSz = xf(n)*ctheta
      radS = sqrt(dSx**2+dSy**2+dSz**2)

      grav(n) = + GMS / radS**3 * sep*cos(xf(n))*cphi

      fict(n) = + v(n)*v(n)*cos(xf(n))/(radius*sin(xf(n))) &
                - u(n)*w(n)/radius &
                - rcm*omega**2*(cos(xf(n))*cphi*uVx + cos(xf(n))*sphi*uVy)
   end do
   

   do n = nmin-4, nmax+5
      dSx = xf(n)*stheta*cphi - sep
      dSy = xf(n)*stheta*sphi
      dSz = xf(n)*ctheta
      radS = sqrt(dSx**2+dSy**2+dSz**2)

      grav(n) = + GMS / radS**3 * sep*cos(xf(n))*cphi

      fict(n) = - u(n)*w(n)/radius*ctheta &
                - u(n)*v(n)/radius*stheta &
                + rcm*omega**2*(sin(xf(n))*uVx - cos(xf(n))*uVy)
   end do
   

5. Stitching the Two Grids expand «

6. Test Problems expand «