FOE2015 / 04 June 2015

Do double degenerate double detonations drive destructive dwarf death?

Ken Shen (UC Berkeley)

Double detonations: Overview

• Taam / Nomoto / Woosley+ / Livne+ in 1980s-1990s

• MPA / etc. in 2000s-2010s

 Helium shell detonation → inward converging shock wave → carbon core detonation

 Pure detonations of ~1.0 Msol C/O WDs: decent match to SNe Ia (Sim+ '10, Kromer+ '10)

Double detonations: Overview

He detonations via stable accretion and convection ($\sim 10^6$ yr)...

- 1980s-1990s (Nomoto / Woosley / et al.): *He MS donor* (sdB/sdO)
- Late 2000s (Bildsten, Shen, et al.): *low-mass He WD donor* (low mass ratio, pre-AM CVn)
- For "large enough" He shell, convective transport is inefficient \rightarrow strong turbulent fluctuations

...Or He detonations via dynamical accretion (~100 s)

- 2010s (Guillochon / Dan / Raskin / Pakmor): Dynamical processes during He + C/O or C/O + C/O WD merger
- Could be dominant channel if all double WD binaries merge (Shen '15a)

(Guillochon+'10)

First detonation: Does the helium ignite? Likely yes

- Spontaneous initiation via Zel'dovich gradient mechanism \rightarrow minimum r_{hotspot}
- Hotspot expectations: $T \sim 10^9$ K, $\rho = 10^5$ 10^6 g/cm³
- Shen & Moore '14: Small CNO pollution + complete nuclear network
 - \rightarrow Minimum *r*_{hotspot} < 10-100 km, helium detonation easy to ignite and propagate
 - \rightarrow Smallest helium shells produce Si and Ca at high velocities

Second detonation: Does the C/O ignite? Likely yes

• Impossible to resolve ignition in full-star 2D sim (burning lengthscale ~ 0.1-1 cm ; $R_{WD} \sim 10^{8-9}$ cm)

- Shen & Bildsten '14: zoom in on the inner 10³ 10⁵ cm around focal point in 1D spherical symmetry
 - C/O easy to ignite via converging shocks
 - O/Ne very difficult

- Also the possibility of "edge-lit" detonation
 - Not well-studied yet

How does a surviving companion influence the remnant?

• Surviving RLOF companion (non-degenerate or WD) casts shadow

Previous work

- Papish+ '15: FLASH simulation of sub-Chandrasekhar explosion with surviving WD companion
- Can helium WD companion be detonated by ejecta?
 - Yes...but only if placed artificially close
 - No detonation if companion at proper distance

 $M_{\rm swept} = 1 \,\, {
m Msol}$ v_{forward shock} ~ 6000 km/s

 García-Senz+ '12: SPH simulation of Chandrasekhar explosion with 1 Msol MS companion

(García-Senz+'12)

SNR forward shock is usually spherical (more or less)

SN 1006, Hα

(Winkler+'14)

Tycho, 24 μ m

(Williams+'13)

LMC 0509, Ha

(Warren & Hughes '04)

(Blair+ '91)

RCW 86, Ha

(Smith '97)

• Almost certainly dominated by ISM inhomogeneities, but could mask ejecta asymmetry

Reverse-shocked ejecta less spherical

Tycho, Fe Ka

(Warren+'05)

(Cassam-Chenaï+ '04)

Emission maps

Summary

- Merging double WD systems with primary WD mass > 0.9 Msol likely lead to detonation
 - Companion WD < 0.7 Msol: helium triggers double detonation
 - Companion WD > 0.7 Msol: direct carbon ignition ("violent merger") can occur
- Helium WD companion not detonated by the SN ejecta if at the proper binary separation
- Supernova remnant consistent with observed SNRs
 - Forward-shocked ISM spherical
 - Reverse-shocked ejecta roughly spherical
- Ongoing work: Appearance of surviving WD companion
 - Likely bright and blue
 - Very high proper motion

	Summary		He WD
	C/O WD + HMS or giant	C/O WD + C/O WD	C/O WD + Or C/O WD
	Single degenerate	Long-lived double degenerate merger	Detonation during double degenerate merger
Explode			
No shock interaction		Depending on timescale	
No H seen			
Nothing seen pre-explosion			
Ex-companion not seen post-Ia			
Rates		Off by factor of a few	Off by factor of a few
Circumstellar absorption	Okay for some, but not for all	Depending on timescale	Depending on clumping
SN remnant			
IGE production			