

Modelling thermonuclear SNe from different progenitor systems

explosion simulations, nucleosynthesis, observables

Ivo Seitenzahl *ANU / CAASTRO*

What's it like down-under

Image:<http://www.icsm.gov.au>

"Wombat Wandering Warning" email urging us to drive carefully

Image:<http://www.icsm.gov.au>

Canberra Canberra

What's it is a

down-under

Ruitenzahl Residence

What is a Type Ia supernova?

What is a Type Ia supernova? **Thermonuclear incineration of (at least) one white dwarf.**

-
-
-
-
-
- - -
- -

What is a Type Ia supernova? **Thermonuclear incineration of (at least) one white dwarf.**

Open questions:

- What is/are the progenitor channel(s)?
- What is/are the explosion mechanism(s)?
- What drives the width-luminosity relation?
- What is/are the WD mass(es) (and composition)?
- What elements/isotopes are produced?

What is a Type Ia supernova? **Thermonuclear incineration of (at least) one white dwarf.**

Open questions:

- What is/are the progenitor channel(s)?
- What is/are the explosion mechanism(s)?
- What drives the width-luminosity relation?
- What is/are the WD mass(es) (and composition)?
- What elements/isotopes are produced?

Complication: sub-classes

What is a Type Ia supernova? **Thermonuclear incineration of (at least) one white dwarf.**

Open questions:

- What is/are the progenitor channel(s)?
- What is/are the explosion mechanism(s)?
- What drives the width-luminosity relationship relationship relationship \mathbf{A} • what is approach: \cdot ^w explosion simulations

Complication: sub-classes

Ο

initial composition

p

о

initial composition

 D

Ο

Ο

6x1023 nuc/g * $2x10^{33}$ g **1.6x10-6 erg/MeV = 1.5x1051 erg**

~1049 erg released by radioactive decays reheats the ejecta and leads to observed optical emission

~1049 erg released by radioactive decays reheats the ejecta and leads to observed optical emission

Movie Credit: Kai Marquardt

white dwarf star

white dwarf star **hydrostatic equilibrium:**

dP/dr = - ρ(r) g(r)

white dwarf star **hydrostatic equilibrium:** *dP/dr = - ρ(r) g(r)*

equation of state:

relativistic, degenerate e-

P = K ρ4/3

white dwarf star **hydrostatic equilibrium:** *dP/dr = - ρ(r) g(r)* **gravity: equation of state:** *P = K ρ4/3* relativistic, degenerate e-

 $g(r) = G M(r) / r^2$

white dwarf star **hydrostatic equilibrium:** *dP/dr = - ρ(r) g(r)* **gravity:** $g(r) = G M(r) / r^2$ **equation of state:** *P = K ρ4/3* relativistic, degenerate e-

white dwarf star **hydrostatic equilibrium:**

P = K ρ4/3

gravity:

g(r) = G M(r) / r2

white dwarf star **hydrostatic equilibrium:** $M = 1.4 M_{\odot}$ *ρc = 2.9 x 109 g cm-3*

interlude: deflagrations and detonations

hydrodynamics of nuclear burning front propagation

interlude: deflagrations and detonations

hydrodynamics of nuclear burning front propagation

subsonic **deflagration** flame mediated by econduction & turbulence:

subsonic nature allows for expansion ahead of flame

interlude: deflagrations and detonations

hydrodynamics of nuclear burning front propagation

subsonic **deflagration** flame mediated by econduction & turbulence:

subsonic nature allows for expansion ahead of flame

supersonic **detonation** front driven by shock wave:

supersonic nature means unburned material unperturbed

Intro to Type Ia supernovae

pure turbulent deflagrations The double-detonations delayed detonations

A. Hardy D. A. Hardy

Intro to Type Ia supernovae

pure turbulent deflagrations The double-detonations delayed detonations

piniary **Principal Procession** ➡ Mprimary ≈ 1.4 solar masses

Intro to Type Ia supernovae

Nature

pure turbulent deflagrations The double-detonations delayed detonations

- $M_{primary} \approx 1.4$ solar masses
- piniary Prince Color Photography Sw doorchoff growd WD mass **➡ slow accretion grows WD mass**

Intro to Type Ia supernovae

Nature

pure turbulent deflagrations The double-detonations delayed detonations

- $M_{primary} \approx 1.4$ solar masses
- piniary Prince Color Photography **➡ slow accretion grows WD mass**
- → siow abordion grows WD mass

→ ignition of deflagration by pycnowhere the senagration by pyrollows: abiban rabibit bili bilangin abitot nuclear fusion of ¹²C at high dens.

Intro to Type Ia supernovae

pure turbulent deflagrations The double-detonations delayed detonations

- $M_{primary} \approx 1.4$ solar masses
- piniary Prince Color Photography **➡ slow accretion grows WD mass**
- → siow abordion grows WD mass

→ ignition of deflagration by pycnogriffer of acting allern by pychological and the nuclear fusion of ¹²C at high dens.
- acioan racion en la caring ricchie:
Thubble riese expende MD $\overline{}$ babbic noce, capando $\overline{}$ **→ RT bubble rises, expands WD**

Intro to Type Ia supernovae

Nature

pure turbulent deflagrations The double-detonations delayed detonations

- $M_{primary} \approx 1.4$ solar masses
- piniary Prince Color Photography **➡ slow accretion grows WD mass**
- → siow abordion grows WD mass

→ ignition of deflagration by pycnogriffer of acting allern by pychological and the nuclear fusion of ¹²C at high dens.
- acioan racion en la caring ricchie:
Thubble riese expende MD $(1 - 2000)$ seq. or evolved starting star **→ RT bubble rises, expands WD**
- possible DDT

Intro to Type Ia supernovae

pure turbulent deflagrations The double-detonations delayed detonations

- $M_{primary} \approx 1.4$ solar masses
- piniary Prince Color Photography **➡ slow accretion grows WD mass**
- → siow abordion grows WD mass

→ ignition of deflagration by pycnogriffer of acting allern by pychological and the nuclear fusion of ¹²C at high dens.
- acioan racion en la caring ricchie:
Thubble riese expende MD $(1 - 2000)$ seq. or evolved starting star **→ RT bubble rises, expands WD**
- possible DDT
- ➡ possible progenitor systems known (U Sco, RS Oph, V445 Pup)

Intro to Type Ia supernovae

Nature

pure turbulent deflagrations The double-detonations delayed detonations

- $M_{primary} \approx 1.4$ solar masses
- piniary Prince Color Photography **➡ slow accretion grows WD mass**
- → siow abordion grows WD mass

→ ignition of deflagration by pycnogriffer of acting allern by pychological and the nuclear fusion of ¹²C at high dens.
- acioan racion en la caring ricchie:
Thubble riese expende MD $(1 - 2000)$ seq. or evolved starting star **→ RT bubble rises, expands WD**
- possible DDT
- ➡ possible progenitor systems known (U Sco, RS Oph, V445 Pup)

violent mergers He double-detonations

 \rightarrow M_{primary} ≈ 1.1 solar masses

Intro to Type Ia supernovae

pure turbulent deflagrations The double-detonations delayed detonations

- $M_{primary} \approx 1.4$ solar masses
- piniary Prince Color Photography **➡ slow accretion grows WD mass**
- → siow abordion grows WD mass

→ ignition of deflagration by pycnogriffer of acting allern by pychological and the nuclear fusion of ¹²C at high dens.
- acioan racion en la caring ricchie:
Thubble riese expende MD $(1 - 2000)$ seq. or evolved starting star **→ RT bubble rises, expands WD**
- possible DDT
- ➡ possible progenitor systems known (U Sco, RS Oph, V445 Pup)

- \rightarrow M_{primary} ≈ 1.1 solar masses
- **→** ignition occurs as

Intro to Type Ia supernovae

pure turbulent deflagrations The double-detonations delayed detonations

- $M_{primary} \approx 1.4$ solar masses
- piniary Prince Color Photography **➡ slow accretion grows WD mass**
- → siow abordion grows WD mass

→ ignition of deflagration by pycnogriffer of acting allern by pychological and the nuclear fusion of ¹²C at high dens.
- acioan racion en la caring ricchie:
Thubble riese expende MD $(1 - 2000)$ seq. or evolved starting star **→ RT bubble rises, expands WD**
- possible DDT
- ➡ possible progenitor systems known (U Sco, RS Oph, V445 Pup)

- \rightarrow M_{primary} ≈ 1.1 solar masses
- **→** ignition occurs as
	- ★ violent accretion stream merge is determined. triggers detonation

Intro to Type Ia supernovae

pure turbulent deflagrations The double-detonations delayed detonations

- $M_{primary} \approx 1.4$ solar masses
- piniary Prince Color Photography **➡ slow accretion grows WD mass**
- → siow abordion grows WD mass

→ ignition of deflagration by pycnogriffer of acting allern by pychological and the nuclear fusion of ¹²C at high dens.
- acioan racion en la caring ricchie:
Thubble riese expende MD $(1 - 2000)$ seq. or evolved starting star **→ RT bubble rises, expands WD**
- possible DDT
- ➡ possible progenitor systems known (U Sco, RS Oph, V445 Pup)

- \rightarrow M_{primary} ≈ 1.1 solar masses
- **→** ignition occurs as
	- ★ violent accretion stream $\mathbf u$ and $\mathbf u$ and $\mathbf u$ are $\mathbf u$ and $\mathbf u$ are $\mathbf u$ and $\mathbf u$ are $\mathbf u$ are triggers detonation
	- **CONTROVER MONOGRAPH WARDERS** ★ He-layer detonates

Intro to Type Ia supernovae

pure turbulent deflagrations The double-detonations delayed detonations

- $M_{primary} \approx 1.4$ solar masses
- piniary Prince Color Photography **➡ slow accretion grows WD mass**
- → siow abordion grows WD mass

→ ignition of deflagration by pycnogriffer of acting allern by pychological and the nuclear fusion of ¹²C at high dens.
- acioan racion en la caring ricchie:
Thubble riese expende MD $(1 - 2000)$ seq. or evolved starting star **→ RT bubble rises, expands WD**
- possible DDT
- ➡ possible progenitor systems known (U Sco, RS Oph, V445 Pup)

- *Nature*
- \rightarrow M_{primary} ≈ 1.1 solar masses
- **→** ignition occurs as
	- ★ violent accretion stream $\mathbf u$ and $\mathbf u$ and $\mathbf u$ are $\mathbf u$ and $\mathbf u$ are $\mathbf u$ and $\mathbf u$ are $\mathbf u$ are triggers detonation
	- \blacktriangledown relayer detunates ★ He-layer detonates
- detonate hydrostatic profile

Intro to Type Ia supernovae

pure turbulent deflagrations The double-detonations delayed detonations

- $M_{primary} \approx 1.4$ solar masses
- piniary Prince Color Photography **➡ slow accretion grows WD mass**
- → siow abordion grows WD mass

→ ignition of deflagration by pycnogriffer of acting allern by pychological and the nuclear fusion of ¹²C at high dens.
- acioan racion en la caring ricchie:
Thubble riese expende MD $(1 - 2000)$ seq. or evolved starting star **→ RT bubble rises, expands WD**
- possible DDT
- ➡ possible progenitor systems known → theoretical calcul (U Sco, RS Oph, V445 Pup)

- \rightarrow M_{primary} ≈ 1.1 solar masses
- **→** ignition occurs as
	- ★ violent accretion stream $\mathbf u$ and $\mathbf u$ and $\mathbf u$ are $\mathbf u$ and $\mathbf u$ are $\mathbf u$ and $\mathbf u$ are $\mathbf u$ are triggers detonation
	- \blacktriangledown relayer detunates ★ He-layer detonates
- detonate hydrostatic profile
- theoretical calculated rates more favourable

➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- ➡ PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- ➡ PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)
- ➡ Riemann solver (Colella & Glaz (1985))

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- ➡ PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)
- ➡ Riemann solver (Colella & Glaz (1985))
- ➡ EoS (Timmes & Swesty 2000)

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- ➡ PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)
- ➡ Riemann solver (Colella & Glaz (1985))
- ➡ EoS (Timmes & Swesty 2000)
- ➡ Moving hybrid-grid (Röpke+2006)

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- ➡ PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)
- ➡ Riemann solver (Colella & Glaz (1985))
- ➡ EoS (Timmes & Swesty 2000)
- ➡ Moving hybrid-grid (Röpke+2006)
- LES: subgrid-scale turbulence model (explicit filtering)

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- ➡ PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)
- ➡ Riemann solver (Colella & Glaz (1985))
- ➡ EoS (Timmes & Swesty 2000)
- ➡ Moving hybrid-grid (Röpke+2006)
- LES: subgrid-scale turbulence model (explicit filtering)
	- ‣ 2D (Niemeyer & Hillebrandt 1995) ; 3D (Schmidt+2006a,b)

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- ➡ PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)
- ➡ Riemann solver (Colella & Glaz (1985))
- ➡ EoS (Timmes & Swesty 2000)
- ➡ Moving hybrid-grid (Röpke+2006)
- LES: subgrid-scale turbulence model (explicit filtering)
	- ‣ 2D (Niemeyer & Hillebrandt 1995) ; 3D (Schmidt+2006a,b)
	- ‣ determines effective turbulent flame speed

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- ➡ PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)
- ➡ Riemann solver (Colella & Glaz (1985))
- ➡ EoS (Timmes & Swesty 2000)
- ➡ Moving hybrid-grid (Röpke+2006)
- LES: subgrid-scale turbulence model (explicit filtering)
	- ‣ 2D (Niemeyer & Hillebrandt 1995) ; 3D (Schmidt+2006a,b)
	- determines effective turbulent flame speed
- ➡ Thermonuclear flames with level-sets (Osher & Sethian 1988)

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- ➡ PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)
- ➡ Riemann solver (Colella & Glaz (1985))
- ➡ EoS (Timmes & Swesty 2000)
- ➡ Moving hybrid-grid (Röpke+2006)
- LES: subgrid-scale turbulence model (explicit filtering)
	- ‣ 2D (Niemeyer & Hillebrandt 1995) ; 3D (Schmidt+2006a,b)
	- ‣ determines effective turbulent flame speed
- ➡ Thermonuclear flames with level-sets (Osher & Sethian 1988)
	- ‣ energy release tables consistent with network (e.g. Fink 2010)

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- ➡ PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)
- ➡ Riemann solver (Colella & Glaz (1985))
- ➡ EoS (Timmes & Swesty 2000)
- ➡ Moving hybrid-grid (Röpke+2006)
- LES: subgrid-scale turbulence model (explicit filtering)
	- ‣ 2D (Niemeyer & Hillebrandt 1995) ; 3D (Schmidt+2006a,b)
	- ‣ determines effective turbulent flame speed
- ➡ Thermonuclear flames with level-sets (Osher & Sethian 1988)
	- \triangleright energy release tables consistent with network (e.g. Fink 2010)
	- ‣ NSE adjustment +neutronization (see e.g. Seitenzahl+2009a)

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- ➡ PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)
- ➡ Riemann solver (Colella & Glaz (1985))
- ➡ EoS (Timmes & Swesty 2000)
- ➡ Moving hybrid-grid (Röpke+2006)
- LES: subgrid-scale turbulence model (explicit filtering)
	- ‣ 2D (Niemeyer & Hillebrandt 1995) ; 3D (Schmidt+2006a,b)
	- ‣ determines effective turbulent flame speed
- ➡ Thermonuclear flames with level-sets (Osher & Sethian 1988)
	- \triangleright energy release tables consistent with network (e.g. Fink 2010)
	- ‣ NSE adjustment +neutronization (see e.g. Seitenzahl+2009a)
- ➡ Deflagration-to-Detonation Transition (Ciaraldi-Schoolmann+2013)

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- ➡ PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)
- ➡ Riemann solver (Colella & Glaz (1985))
- ➡ EoS (Timmes & Swesty 2000)
- ➡ Moving hybrid-grid (Röpke+2006)
- LES: subgrid-scale turbulence model (explicit filtering)
	- ‣ 2D (Niemeyer & Hillebrandt 1995) ; 3D (Schmidt+2006a,b)
	- ‣ determines effective turbulent flame speed
- ➡ Thermonuclear flames with level-sets (Osher & Sethian 1988)
	- \triangleright energy release tables consistent with network (e.g. Fink 2010)
	- ‣ NSE adjustment +neutronization (see e.g. Seitenzahl+2009a)
- ➡ Deflagration-to-Detonation Transition (Ciaraldi-Schoolmann+2013)
- ➡ Critical detonation conditions (Seitenzahl+2009b)

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- ➡ PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)
- ➡ Riemann solver (Colella & Glaz (1985))
- ➡ EoS (Timmes & Swesty 2000)
- ➡ Moving hybrid-grid (Röpke+2006)
- LES: subgrid-scale turbulence model (explicit filtering)
	- ‣ 2D (Niemeyer & Hillebrandt 1995) ; 3D (Schmidt+2006a,b)
	- ‣ determines effective turbulent flame speed
- ➡ Thermonuclear flames with level-sets (Osher & Sethian 1988)
	- \triangleright energy release tables consistent with network (e.g. Fink 2010)
	- ‣ NSE adjustment +neutronization (see e.g. Seitenzahl+2009a)
- ➡ Deflagration-to-Detonation Transition (Ciaraldi-Schoolmann+2013)
- ➡ Critical detonation conditions (Seitenzahl+2009b)
- Nucleosynthesis: tracer particles + nuclear reaction network

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- ➡ PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)
- ➡ Riemann solver (Colella & Glaz (1985))
- ➡ EoS (Timmes & Swesty 2000)
- ➡ Moving hybrid-grid (Röpke+2006)
- LES: subgrid-scale turbulence model (explicit filtering)
	- ‣ 2D (Niemeyer & Hillebrandt 1995) ; 3D (Schmidt+2006a,b)
	- ‣ determines effective turbulent flame speed
- ➡ Thermonuclear flames with level-sets (Osher & Sethian 1988)
	- ‣ energy release tables consistent with network (e.g. Fink 2010)
	- ‣ NSE adjustment +neutronization (see e.g. Seitenzahl+2009a)
- ➡ Deflagration-to-Detonation Transition (Ciaraldi-Schoolmann+2013)
- ➡ Critical detonation conditions (Seitenzahl+2009b)
- Nucleosynthesis: tracer particles + nuclear reaction network
	- ‣ Travaglio2004+ (REACLIB 2009), Pakmor 2012+ (JINA 2014)

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- ➡ PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)
- ➡ Riemann solver (Colella & Glaz (1985))
- ➡ EoS (Timmes & Swesty 2000)
- ➡ Moving hybrid-grid (Röpke+2006)
- LES: subgrid-scale turbulence model (explicit filtering)
	- ‣ 2D (Niemeyer & Hillebrandt 1995) ; 3D (Schmidt+2006a,b)
	- ‣ determines effective turbulent flame speed
- ➡ Thermonuclear flames with level-sets (Osher & Sethian 1988)
	- ‣ energy release tables consistent with network (e.g. Fink 2010)
	- ‣ NSE adjustment +neutronization (see e.g. Seitenzahl+2009a)
- ➡ Deflagration-to-Detonation Transition (Ciaraldi-Schoolmann+2013)
- ➡ Critical detonation conditions (Seitenzahl+2009b)
- ➡ Nucleosynthesis: tracer particles + nuclear reaction network
	- ‣ Travaglio2004+ (REACLIB 2009), Pakmor 2012+ (JINA 2014)
- ➡ RT w/ ARTIS (Monte-Carlo, Sim 2007, Kromer & Sim 2009)

N100 delayed-detonation

Seitenzahl+ (2013), MNRAS, 429, 1156 Movie by S. Ohlmann, Univ. Würzburg

 Ohlmann+ (2014), A&A, 572, 57

N100 delayed-detonation

Seitenzahl+ (2013), MNRAS, 429, 1156 Movie by S. Ohlmann, Univ. Würzburg

 Ohlmann+ (2014), A&A, 572, 57

N100 delayed-detonation

Seitenzahl+ (2013), MNRAS, 429, 1156 Movie by S. Ohlmann, Univ. Würzburg

 Ohlmann+ (2014), A&A, 572, 57

SNID IDs e.g. N40 as normal SN Ia

 Sim+ (2013), MNRAS, 436, 333

delayed-detonations $\mathcal{F} \setminus \mathcal{F}$ i lihhnili comparison of standard properties between \mathcal{F} and \mathcal{F}

the SNID temperature database, which includes database, which includes database, which includes data from Blo

But we don't recover the WLR

only in the number and distribution of ignition of ignition spaces; red for our two models that adopt differen

 Sim+ (2013), MNRAS, 436, 333

ered a "good" match; Blondin & Tonry 2007). . The code also fits

Figure 5. As Figure 4 but showing *B*- (left) and *V*-band (right) width-luminosity relations.

model N5def deflagration leaving bound remnant behind

Deflagrations in M_{Ch} WDs that fail to unbind the whole star provide an excellent model for 2002cx-like SNe Ia

model N5def deflagration leaving bound remnant behind

Deflagrations in M_{Ch} WDs that $-6.3 d$ 2005hk fail to unbind the whole star N5def provide an excellent model for 200 ^{0.75s} $1.5 s$ 100_s Mean atomic nun -40 -28 $\begin{array}{c} \n \$ 4000 km 5e5 km **Fink+ (2014), MNRAS, 438, 1762** 2.0 1.5 1.0 0.5 300 km $0⁰$ 4000 5000 6000 7000 8000 9000 Rest wavelength in Å **Kromer+ (2013), MNRAS, 429, 2287**

model N5def deflagration leaving bound remnant behind

Australianl **National** Jniversitv

Deflagrations in M_{Ch} WDs that $-6.3 d$ 2005hk fail to unbind the whole star N5def provide an excellent model for 200° $1.5s$ 100_s SN 2012Z: He star donor identified? McCully+ (2014), Nature, 512, 54 $\begin{array}{|c|c|}\n\hline\n\frac{1}{2} & -20 \\
\hline\n\frac{1}{2} & 14\n\end{array}$ 4000 km 5e5 km **Fink+ (2014), MNRAS, 438, 1762** $2.0¹$ 1.5 1.0 0.5 300 km 4000 5000 6000 7000 8000 9000 Rest wavelength in Å **Kromer+ (2013), MNRAS, 429, 2287**

Australian
National University

Australian National **University**

→ Stellar evolution predicts "hybrid" WDs

Australian **National** Universitv

- **→ Stellar evolution predicts "hybrid" WDs**
	- ‣ e.g. Denissenkov+2013; Chen+2014

Australian **National** Universitv

- **→ Stellar evolution predicts "hybrid" WDs**
	- ‣ e.g. Denissenkov+2013; Chen+2014
	- ‣ small CO core, large ONe "mantle"

- **→ Stellar evolution predicts "hybrid" WDs**
	- ‣ e.g. Denissenkov+2013; Chen+2014
	- small CO core, large ONe "mantle"
	- accrete to M_{Ch} short delay times

Australian **National** Universit\

- **→ Stellar evolution predicts "hybrid" WDs**
	- ‣ e.g. Denissenkov+2013; Chen+2014
	- small CO core, large ONe "mantle"
	- accrete to M_{Ch} short delay times

Australian National University

- **→ Stellar evolution predicts "hybrid" WDs**
	- ‣ e.g. Denissenkov+2013; Chen+2014
	- small CO core, large ONe "mantle"
	- accrete to M_{Ch} short delay times
- **→ 3D deflagration simulation: 0.2 M © CO**

Australian **National** Universit[,]

- **→ Stellar evolution predicts "hybrid" WDs**
	- ‣ e.g. Denissenkov+2013; Chen+2014
	- small CO core, large ONe "mantle"
	- accrete to M_{Ch} short delay times
- **→ 3D deflagration simulation: 0.2 M © CO**

Deflagrations in hybrid CONe white dwarfs 7 ✓ deflagration extinguishes in ONe (?)

Australian **National** Universit[.]

- **→ Stellar evolution predicts "hybrid" WDs**
	- ‣ e.g. Denissenkov+2013; Chen+2014
	- small CO core, large ONe "mantle"
	- accrete to M_{Ch} short delay times
- **→ 3D deflagration simulation: 0.2 M © CO**
	- ✓ deflagration extinguishes in ONe (?)
	- **√** 3.4 x10⁻³ M ⊚ of ⁵⁶Ni

- **→ Stellar evolution predicts "hybrid" WDs** ‣ e.g. Denissenkov+2013; Chen+2014 small CO core, large ONe "mantle"
	- accrete to M_{Ch} short delay times
- **√** 3.4 x10⁻³ M ⊚ of ⁵⁶Ni **→ 3D deflagration simulation: 0.2 M © CO** ✓ deflagration extinguishes in ONe (?)

- **→ Stellar evolution predicts "hybrid" WDs** ‣ e.g. Denissenkov+2013; Chen+2014
	- small CO core, large ONe "mantle"
	- accrete to M_{Ch} short delay times
- **√** 3.4 x10⁻³ M ⊚ of ⁵⁶Ni **→ 3D deflagration simulation: 0.2 M © CO** ✓ deflagration extinguishes in ONe (?)

What about 1991T? Research

GCD-model of 1.4 M☉ **CO WD** Suggested for 1991T SNe (e.g. Fisher & Jumper 2015) $\overline{CCD \text{ model of 4.4 M}}$ $\overline{\text{GCD}}$ -model of 1.4 M $_{\circ}$ CO WD

 Seitenzahl+ (in prep) Table 4. Final chemical abundances of model GCD200.

- › CO WD in binary system with other WD after common envelope phase
- › For right mass ratio, accretion stream triggers He-shell and C/O core detonations
	- primary WD burns almost hydrostatically
	- secondary WD may (or possibly may not) burn explosively

- › CO WD in binary system with other WD after common envelope phase
- › For right mass ratio, accretion stream triggers He-shell and C/O core detonations
	- primary WD burns almost hydrostatically
	- secondary WD may (or possibly may not) burn explosively

- › CO WD in binary system with other WD after common envelope phase
- › For right mass ratio, accretion stream triggers He-shell and C/O core detonations
	- primary WD burns almost hydrostatically
	- secondary WD may (or possibly may not) burn explosively

- › CO WD in binary system with other WD after common envelope phase
- › For right mass ratio, accretion stream triggers He-shell and C/O core detonations
	- primary WD burns almost hydrostatically
	- secondary WD may (or possibly may not) burn explosively

- › CO WD in binary system with other WD after common envelope phase
- › For right mass ratio, accretion stream triggers He-shell and C/O core detonations
	- primary WD burns almost hydrostatically
	- secondary WD may (or possibly may not) burn explosively

- › CO WD in binary system with other WD after common envelope phase
- › For right mass ratio, accretion stream triggers He-shell and C/O core detonations
	- primary WD burns almost hydrostatically

 10^9 cm

- secondary WD may (or possibly may not) burn explosively

- 10^9 cm › CO WD in binary system with other WD after common envelope phase
- › For right mass ratio, accretion stream triggers He-shell and C/O core detonations
	- primary WD burns almost hydrostatically

 Ω

- secondary WD may (or possibly may not) burn explosively

Australiar National Jniversitv

- primary WD burns almost hydrostatically
- secondary WD may (or possibly may not) burn explosively
N100 delayed-detonation (Seitenzahl+2013) 1.1+0.9 Msun violent merger (Pakmor+2012)

Spectral comparison inconclusive

Spectral comparison inconclusive

Nucleosynthesis constraints Mn from SNe Ia

 $log(^{55}Co)$ mass fraction

Australian **Nucleosynthesis constraints National Mn from SNe Ia** University $log(^{55}Co)$ mass fraction $-$ 55Co — \rightarrow 55Fe — \rightarrow 55Mn

Figure by Florian Lach (Universität Würzburg) Figure by Florian Lach (Universität Würzburg)

- › 1: low entropy NSE most ⁵⁵Co is produced here
- › 2: high entropy NSE 55Co(p,g)⁵⁶Ni destroys ⁵⁵Co

- ⁵⁵Co ┉→ ⁵⁵Fe ┉→ ⁵⁵Mn $-$ 56Ni \rightarrow 56Co \rightarrow 56Fe
- › 1: low entropy NSE most ⁵⁵Co is produced here
- › 2: high entropy NSE 55Co(p,g)⁵⁶Ni destroys ⁵⁵Co
- › 3: incomplete Si-burning some ⁵⁵Co is produced here
- -4 -3 -2 10^{10} d) delayed-detonation **1** log(peak density) [g cm-3] (Seitenzahl+ 2013) og(peak density) [g cm-³] 10⁹ **3** 10⁸ **2**10⁷ 10⁶ 10⁵ $\begin{array}{cccccccccccc}\n1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\n\end{array}$ \ddot{x} peak Temperature [10⁹ K]

 $log(^{55}Co)$ mass fraction

Nucleosynthesis constraints Mn from SNe Ia

- 55Co ➟ 55Fe ➠ 55Mn
- $-$ 56Ni \rightarrow 56Co \rightarrow 56Fe
- › 1: low entropy NSE most ⁵⁵Co is produced here
- › 2: high entropy NSE 55Co(p,g)⁵⁶Ni destroys ⁵⁵Co
- › 3: incomplete Si-burning some ⁵⁵Co is produced here
	- Densities in merger model too low to enter [1]

Nucleosynthesis constraints Mn from SNe Ia

- 55Co ➟ 55Fe ➠ 55Mn
- $-$ 56Ni \rightarrow 56Co \rightarrow 56Fe
- › 1: low entropy NSE most ⁵⁵Co is produced here
- › 2: high entropy NSE 55Co(p,g)⁵⁶Ni destroys ⁵⁵Co
- › 3: incomplete Si-burning some ⁵⁵Co is produced here
	- Densities in merger model too low to enter [1]
	- Merger model produces less 55Co for same ⁵⁶Ni

 $log(^{55}Co)$ mass fraction

$[Mn/Fe]=log(N(Mn) / N(Fe))$ - log(N(Mn) / N(Fe))⊙

Calle 6 The Given Reference is four than the expectation of the Seitenzahl et al. (2013), A&A, 559, L5 $\frac{1}{\sqrt{M}}$ yields are published here first time, assuming that the fir

$[Mn/Fe]=log(N(Mn) / N(Fe))$ - log(N(Mn) / N(Fe))⊙

Calle 6 The Given Reference is four than the expectation of the Seitenzahl et al. (2013), A&A, 559, L5 $\frac{1}{\sqrt{M}}$ yields are published here first time, assuming that the fir

$[Mn/Fe]=log(N(Mn) / N(Fe))$ - log(N(Mn) / N(Fe))⊙

Calle 6 The Given Reference is four than the expectation of the Seitenzahl et al. (2013), A&A, 559, L5 $\frac{1}{\sqrt{M}}$ yields are published here first time, assuming that the fir

$[Mn/Fe]=log(N(Mn) / N(Fe))$ – log(N(Mn) / N(Fe))⊙

 $\frac{1}{\sqrt{M}}$ yields are published here first time, assuming that the fir

 $[Mn/Fe]=log(N(Mn)/N(Fe))$ - log(N(Mn) / N(Fe))⊙

Table 1. Combined 55 Co and 55 Fe vields in solar masses as a function of $\frac{1}{\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac$ **Table 1.** Combined ${}^{55}Co$ and ${}^{55}Fe$ yields in solar masses as a function of progenitor ZAMS metallicity.

 $\sqrt{\frac{6a}{\pi}}$ The given reference is $\sqrt{2015}$ MNPAS $\sqrt{47}$ 1484 $\frac{M_{\text{N}}}{M_{\text{N}}}\left(\frac{M_{\text{N}}}{M_{\text{N}}}\right)$, $\frac{M_{\text{N}}}{M_{\text{N}}}\left(\frac{M_{\text{N}}}{M_{\text{N}}}\right)$ **Seitenzahl et al. (2015), MNRAS, 447, 1484** unaffected in case of the major part of the major part of normal S

Ejected masses from bolometric light curves

Explosion simulations connect progenitor models and observations

- Explosion simulations connect progenitor models and observations
- Some progress:

- ➡ Explosion simulations connect progenitor models and observations
- Some progress:
	- ✓ **MCh primaries should exist**

- Explosion simulations connect progenitor models and observations
- Some progress:
	- **Mch primaries should exist**
	- ✓ **SNe Iax likely pure deflagrations in CO and possibly hybrid WDs**

- Explosion simulations connect progenitor models and observations
- Some progress:
	- **M_{ch} primaries should exist**
	- ✓ **SNe Iax likely pure deflagrations in CO and possibly hybrid WDs**
- Currently far from unified model that fulfils all constraints:

- ➡ Explosion simulations connect progenitor models and observations
- Some progress:
	- ✓ **MCh primaries should exist**
	- ✓ **SNe Iax likely pure deflagrations in CO and possibly hybrid WDs**
- Currently far from unified model that fulfils all constraints:
	- rates and delay times
	- spectra and light curves
	- nucleosynthesis and chemical evolution
	- ✓ pre-explosion progenitors
	- ✓ post-explosion companions (SNRs)
	- ✓ CSM interaction
	- SNR morphology ... and many more
- ➡ **Clearly, also need more funding!**

- ➡ Explosion simulations connect progenitor models and observations
- Some progress:
	- ✓ **MCh primaries should exist**
	- ✓ **SNe Iax likely pure deflagrations in CO and possibly hybrid WDs**
- Currently far from unified model that fulfils all constraints:
	- rates and delay times
	- spectra and light curves
	- nucleosynthesis and chemical evolution
	- ✓ pre-explosion progenitors
	- ✓ post-explosion companions (SNRs)
	- ✓ CSM interaction
	- SNR morphology ... and many more
- ➡ **Clearly, also need more funding!**

END