

Modelling thermonuclear SNe from different progenitor systems

1100 1100 1100	100.00 100.00	214,7 MI + 101.005		100 M	998 (202 827)	- 100.005	CANA CANA NICE	100
100a 100 Mil 100 Mil	NACE DAD INC + DAD ADM	NUCA LIGO DE NEL + DEL DEN	880a 173338 • 188389	800a 1773080 x 100.000	1904 275.763 + 185.005	8004 2010-0	mis Mate IIII	8004 1005.093 8-100.005
105 215 Mi + 100 Mi	105 0.275 K < 100.004	031.8 + 100.05	525	2004 2014417 + 100.00%	505 8(mart) 5 6-0 3/	157e 157e 157e 157e	Decay Mode a : 100.00 4	41 40 5 5 41 40 5 5
201374E + 10005	2000 - 100.004	13913 13913	1000	1000 1000	123	2.5794 H	1. 100 March 1	1.10.00
473.94	8002 1-1.001 41000 1-1	1000 1775-065 + 100-005	Harter Harter	NACE PLANE NOTS	1000	1809 3-487 M (+-100.005	1007 1342 H (- 100 MS	1111 1-1010

explosion simulations, nucleosynthesis, observables

Ivo Seitenzahl ANU / CAASTRO

Australian Government

Australian Research Council

What's it like down-under

Image: http://www.icsm.gov.au

"Wombat Wandering Warning" email urging us to drive carefully

What is a Type Ia supernova?

What is a Type Ia supernova? Thermonuclear incineration of (at least) one white dwarf.

What is a Type Ia supernova? Thermonuclear incineration of (at least) one white dwarf.

Open questions:

- What is/are the progenitor channel(s)?
- What is/are the explosion mechanism(s)?
- What drives the width-luminosity relation?
- What is/are the WD mass(es) (and composition)?
- What elements/isotopes are produced?

What is a Type Ia supernova? Thermonuclear incineration of (at least) one white dwarf.

Open questions:

- What is/are the progenitor channel(s)?
- What is/are the explosion mechanism(s)?
- What drives the width-luminosity relation?
- What is/are the WD mass(es) (and composition)?
- What elements/isotopes are produced?

SNe la

Complication: sub-classes

What is a Type Ia supernova? Thermonuclear incineration of (at least) one white dwarf.

Open questions:

- What is/are the progenitor channel(s)?
- What is/are the explosion mechanism(s)?
- : W Approach: • W explosion simulations

Complication: sub-classes

theory for progenitor

initial composition

initial composition

p

~10⁵¹ erg released during ~1 sec of explosive burning transformed into E_{kin} and work against gravity.

0.8 MeV/nuc * 6x10²³ nuc/g * 2x10³³ g * 1.6x10⁻⁶ erg/MeV = 1.5x10⁵¹ erg

~10⁵¹ erg released during ~1 sec of explosive burning transformed into E_{kin} and work against gravity.

~10⁵¹ erg released during ~1 sec of explosive burning transformed into E_{kin} and work against gravity.

~10⁵¹ erg released during ~1 sec of explosive burning transformed into E_{kin} and work against gravity.

~10⁴⁹ erg released by radioactive decays reheats the ejecta and leads to observed optical emission

~10⁴⁹ erg released by radioactive decays reheats the ejecta and leads to observed optical emission

Movie Credit: Kai Marquardt

white dwarf star

white dwarf star

hydrostatic equilibrium:

 $dP/dr = -\rho(r) g(r)$

white dwarf star

hydrostatic equilibrium: $dP/dr = -\rho(r) g(r)$ equation of state:

relativistic, degenerate e-

 $P = K \rho^{4/3}$

white dwarf star

hydrostatic equilibrium: $dP/dr = -\rho(r) g(r)$ equation of state: relativistic, degenerate e $P = K \rho^{4/3}$ gravity: $g(r) = G M(r) / r^2$

hydrostatic equilibrium: $dP/dr = -\rho(r) g(r)$ equation of state: relativistic, degenerate e- $P = K \rho^{4/3}$ gravity: $g(r) = G M(r) / r^2$

white dwarf star

 $P = K \rho^{4/3}$

gravity:

 $g(r) = G M(r) / r^2$

interlude: deflagrations and detonations

hydrodynamics of nuclear burning front propagation

interlude: deflagrations and detonations

hydrodynamics of nuclear burning front propagation

subsonic deflagration flame mediated by e⁻ conduction & turbulence:

subsonic nature allows for expansion ahead of flame

interlude: deflagrations and detonations

hydrodynamics of nuclear burning front propagation

subsonic deflagration flame mediated by er conduction & turbulence:

subsonic nature allows for expansion ahead of flame

supersonic detonation front driven by shock wave:

supersonic nature means unburned material unperturbed

delayed detonations pure turbulent deflagrations

D. A. Hardy

Nature

delayed detonations pure turbulent deflagrations

M_{primary} ≈ 1.4 solar masses

Nature

delayed detonations pure turbulent deflagrations

- M_{primary} ≈ 1.4 solar masses
- slow accretion grows WD mass

Nature

delayed detonations pure turbulent deflagrations

- M_{primary} ≈ 1.4 solar masses
- slow accretion grows WD mass
- ignition of deflagration by pycnonuclear fusion of ¹²C at high dens.

Nature

delayed detonations pure turbulent deflagrations

- M_{primary} ≈ 1.4 solar masses
- slow accretion grows WD mass
- ignition of deflagration by pycnonuclear fusion of ¹²C at high dens.
- ➡ RT bubble rises, expands WD

Nature

delayed detonations pure turbulent deflagrations

- M_{primary} ≈ 1.4 solar masses
- slow accretion grows WD mass
- ignition of deflagration by pycnonuclear fusion of ¹²C at high dens.
- ➡ RT bubble rises, expands WD
- possible DDT

Nature

delayed detonations pure turbulent deflagrations

- M_{primary} ≈ 1.4 solar masses
- slow accretion grows WD mass
- ignition of deflagration by pycnonuclear fusion of ¹²C at high dens.
- RT bubble rises, expands WD
- possible DDT
- possible progenitor systems known (U Sco, RS Oph, V445 Pup)

delayed detonations pure turbulent deflagrations

- M_{primary} ≈ 1.4 solar masses
- slow accretion grows WD mass
- ignition of deflagration by pycnonuclear fusion of ¹²C at high dens.
- RT bubble rises, expands WD
- possible DDT
- possible progenitor systems known (U Sco, RS Oph, V445 Pup)

- Nature
- M_{primary} ≈ 1.1 solar masses

delayed detonations pure turbulent deflagrations

- M_{primary} ≈ 1.4 solar masses
- slow accretion grows WD mass
- ignition of deflagration by pycnonuclear fusion of ¹²C at high dens.
- RT bubble rises, expands WD
- possible DDT
- possible progenitor systems known (U Sco, RS Oph, V445 Pup)

- M_{primary} ≈ 1.1 solar masses
- ignition occurs as

delayed detonations pure turbulent deflagrations

- M_{primary} ≈ 1.4 solar masses
- slow accretion grows WD mass
- ignition of deflagration by pycnonuclear fusion of ¹²C at high dens.
- ➡ RT bubble rises, expands WD
- possible DDT
- possible progenitor systems known (U Sco, RS Oph, V445 Pup)

- Nature
- M_{primary} ≈ 1.1 solar masses
- ignition occurs as
 - violent accretion stream triggers detonation

delayed detonations pure turbulent deflagrations

- M_{primary} ≈ 1.4 solar masses
- slow accretion grows WD mass
- ignition of deflagration by pycnonuclear fusion of ¹²C at high dens.
- ➡ RT bubble rises, expands WD
- possible DDT
- possible progenitor systems known (U Sco, RS Oph, V445 Pup)

- Nature
- M_{primary} ≈ 1.1 solar masses
- ignition occurs as
 - violent accretion stream triggers detonation
 - ★ He-layer detonates

delayed detonations pure turbulent deflagrations

- M_{primary} ≈ 1.4 solar masses
- slow accretion grows WD mass
- ignition of deflagration by pycnonuclear fusion of ¹²C at high dens.
- RT bubble rises, expands WD
- possible DDT
- possible progenitor systems known (U Sco, RS Oph, V445 Pup)

- M_{primary} ≈ 1.1 solar masses
- ignition occurs as
 - violent accretion stream triggers detonation
 - ★ He-layer detonates
- detonate hydrostatic profile

delayed detonations pure turbulent deflagrations

- M_{primary} ≈ 1.4 solar masses
- slow accretion grows WD mass
- ignition of deflagration by pycnonuclear fusion of ¹²C at high dens.
- RT bubble rises, expands WD
- possible DDT
- possible progenitor systems known (U Sco, RS Oph, V445 Pup)

- M_{primary} ≈ 1.1 solar masses
- ignition occurs as
 - violent accretion stream triggers detonation
 - ★ He-layer detonates
- detonate hydrostatic profile
- theoretical calculated rates more favourable

Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- ➡ PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- ➡ PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)
- ➡ Riemann solver (Colella & Glaz (1985))

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- ➡ PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)
- ➡ Riemann solver (Colella & Glaz (1985))
- ➡ EoS (Timmes & Swesty 2000)

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- ➡ PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)
- ➡ Riemann solver (Colella & Glaz (1985))
- ➡ EoS (Timmes & Swesty 2000)
- Moving hybrid-grid (Röpke+2006)

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- ➡ PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)
- ➡ Riemann solver (Colella & Glaz (1985))
- ➡ EoS (Timmes & Swesty 2000)
- Moving hybrid-grid (Röpke+2006)
- LES: subgrid-scale turbulence model (explicit filtering)

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- ➡ PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)
- ➡ Riemann solver (Colella & Glaz (1985))
- ➡ EoS (Timmes & Swesty 2000)
- Moving hybrid-grid (Röpke+2006)
- LES: subgrid-scale turbulence model (explicit filtering)
 - D (Niemeyer & Hillebrandt 1995); 3D (Schmidt+2006a,b)

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)
- ➡ Riemann solver (Colella & Glaz (1985))
- ➡ EoS (Timmes & Swesty 2000)
- Moving hybrid-grid (Röpke+2006)
- LES: subgrid-scale turbulence model (explicit filtering)
 - > 2D (Niemeyer & Hillebrandt 1995) ; 3D (Schmidt+2006a,b)
 - determines effective turbulent flame speed

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)
- ➡ Riemann solver (Colella & Glaz (1985))
- ➡ EoS (Timmes & Swesty 2000)
- Moving hybrid-grid (Röpke+2006)
- LES: subgrid-scale turbulence model (explicit filtering)
 - > 2D (Niemeyer & Hillebrandt 1995) ; 3D (Schmidt+2006a,b)
 - determines effective turbulent flame speed
- Thermonuclear flames with level-sets (Osher & Sethian 1988)

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)
- ➡ Riemann solver (Colella & Glaz (1985))
- ➡ EoS (Timmes & Swesty 2000)
- Moving hybrid-grid (Röpke+2006)
- LES: subgrid-scale turbulence model (explicit filtering)
 - > 2D (Niemeyer & Hillebrandt 1995) ; 3D (Schmidt+2006a,b)
 - determines effective turbulent flame speed
- Thermonuclear flames with level-sets (Osher & Sethian 1988)
 - energy release tables consistent with network (e.g. Fink 2010)

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)
- ➡ Riemann solver (Colella & Glaz (1985))
- ➡ EoS (Timmes & Swesty 2000)
- Moving hybrid-grid (Röpke+2006)
- LES: subgrid-scale turbulence model (explicit filtering)
 - > 2D (Niemeyer & Hillebrandt 1995) ; 3D (Schmidt+2006a,b)
 - determines effective turbulent flame speed
- Thermonuclear flames with level-sets (Osher & Sethian 1988)
 - energy release tables consistent with network (e.g. Fink 2010)
 - NSE adjustment +neutronization (see e.g. Seitenzahl+2009a)

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)
- ➡ Riemann solver (Colella & Glaz (1985))
- ➡ EoS (Timmes & Swesty 2000)
- Moving hybrid-grid (Röpke+2006)
- LES: subgrid-scale turbulence model (explicit filtering)
 - D (Niemeyer & Hillebrandt 1995); 3D (Schmidt+2006a,b)
 - determines effective turbulent flame speed
- Thermonuclear flames with level-sets (Osher & Sethian 1988)
 - energy release tables consistent with network (e.g. Fink 2010)
 - NSE adjustment +neutronization (see e.g. Seitenzahl+2009a)
- Deflagration-to-Detonation Transition (Ciaraldi-Schoolmann+2013)

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)
- ➡ Riemann solver (Colella & Glaz (1985))
- ➡ EoS (Timmes & Swesty 2000)
- Moving hybrid-grid (Röpke+2006)
- LES: subgrid-scale turbulence model (explicit filtering)
 - D (Niemeyer & Hillebrandt 1995); 3D (Schmidt+2006a,b)
 - determines effective turbulent flame speed
- Thermonuclear flames with level-sets (Osher & Sethian 1988)
 - energy release tables consistent with network (e.g. Fink 2010)
 - NSE adjustment +neutronization (see e.g. Seitenzahl+2009a)
- Deflagration-to-Detonation Transition (Ciaraldi-Schoolmann+2013)
- Critical detonation conditions (Seitenzahl+2009b)

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)
- ➡ Riemann solver (Colella & Glaz (1985))
- ➡ EoS (Timmes & Swesty 2000)
- Moving hybrid-grid (Röpke+2006)
- LES: subgrid-scale turbulence model (explicit filtering)
 - D (Niemeyer & Hillebrandt 1995); 3D (Schmidt+2006a,b)
 - determines effective turbulent flame speed
- Thermonuclear flames with level-sets (Osher & Sethian 1988)
 - energy release tables consistent with network (e.g. Fink 2010)
 - NSE adjustment +neutronization (see e.g. Seitenzahl+2009a)
- Deflagration-to-Detonation Transition (Ciaraldi-Schoolmann+2013)
- Critical detonation conditions (Seitenzahl+2009b)
- Nucleosynthesis: tracer particles + nuclear reaction network

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)
- ➡ Riemann solver (Colella & Glaz (1985))
- ➡ EoS (Timmes & Swesty 2000)
- Moving hybrid-grid (Röpke+2006)
- LES: subgrid-scale turbulence model (explicit filtering)
 - D (Niemeyer & Hillebrandt 1995); 3D (Schmidt+2006a,b)
 - determines effective turbulent flame speed
- Thermonuclear flames with level-sets (Osher & Sethian 1988)
 - energy release tables consistent with network (e.g. Fink 2010)
 - NSE adjustment +neutronization (see e.g. Seitenzahl+2009a)
- Deflagration-to-Detonation Transition (Ciaraldi-Schoolmann+2013)
- Critical detonation conditions (Seitenzahl+2009b)
- Nucleosynthesis: tracer particles + nuclear reaction network
 - Travaglio2004+ (REACLIB 2009), Pakmor 2012+ (JINA 2014)

- ➡ Finite volume, grid based hydro: LEAFS (Reinecke+ 1999, 2002)
- PPM (Colella & Woodward (1984)) in PROMETHEUS (Fryxell+1989)
- ➡ Riemann solver (Colella & Glaz (1985))
- ➡ EoS (Timmes & Swesty 2000)
- Moving hybrid-grid (Röpke+2006)
- LES: subgrid-scale turbulence model (explicit filtering)
 - D (Niemeyer & Hillebrandt 1995); 3D (Schmidt+2006a,b)
 - determines effective turbulent flame speed
- Thermonuclear flames with level-sets (Osher & Sethian 1988)
 - energy release tables consistent with network (e.g. Fink 2010)
 - NSE adjustment +neutronization (see e.g. Seitenzahl+2009a)
- Deflagration-to-Detonation Transition (Ciaraldi-Schoolmann+2013)
- Critical detonation conditions (Seitenzahl+2009b)
- Nucleosynthesis: tracer particles + nuclear reaction network
 - Travaglio2004+ (REACLIB 2009), Pakmor 2012+ (JINA 2014)
- RT w/ ARTIS (Monte-Carlo, Sim 2007, Kromer & Sim 2009)

N100 delayed-detonation

Seitenzahl+ (2013), MNRAS, 429, 1156

Ohlmann+ (2014), A&A, 572, 57

Movie by S. Ohlmann, Univ. Würzburg

N100 delayed-detonation

Seitenzahl+ (2013), MNRAS, 429, 1156

Ohlmann+ (2014), A&A, 572, 57

Movie by S. Ohlmann, Univ. Würzburg

N100 delayed-detonation

Seitenzahl+ (2013), MNRAS, 429, 1156

Ohlmann+ (2014), A&A, 572, 57

Movie by S. Ohlmann, Univ. Würzburg

SNID IDs e.g. N40 as normal SN Ia

Sim+ (2013), MNRAS, 436, 333

delayed-detonations

But we don't recover the WLR

Sim+ (2013), MNRAS, 436, 333

model N5def deflagration leaving bound remnant behind

Deflagrations in M_{Ch} WDs that fail to unbind the whole star provide an excellent model for 2002cx-like SNe Ia

model N5def deflagration leaving bound remnant behind

Deflagrations in M_{Ch} WDs that -6.3 d 2005hk fail to unbind the whole star N5def provide an excellent model for 0.75 s 1.5 s 100 s 20(Mean atomic num -40 -28 -20 -14 4000 km 5e5 km Fink+ (2014), MNRAS, 438, 1762 2.0 1.5 1.C 0.5 300 km 4000 5000 6000 7000 8000 9000 Rest wavelength in Å Kromer+ (2013), MNRAS, 429, 2287

model N5def deflagration leaving bound remnant behind

2005hk

N5def

-6.3 d

Deflagrations in M_{Ch} WDs that fail to unbind the whole star provide an excellent model for 100 s 20(SN 2012Z: He star donor identified? -20 -14

Fink+ (2014), MNRAS, 438, 1762

Kromer+ (2013), MNRAS, 429, 2287

300 km

→ Stellar evolution predicts "hybrid" WDs

- Stellar evolution predicts "hybrid" WDs
 - e.g. Denissenkov+2013; Chen+2014

ASTRO A model for 2008ha ($M_v = -14.2$) deflagrations in hybrid WDs

- Stellar evolution predicts "hybrid" WDs
 - e.g. Denissenkov+2013; Chen+2014
 - small CO core, large ONe "mantle"

- Stellar evolution predicts "hybrid" WDs
 - e.g. Denissenkov+2013; Chen+2014
 - small CO core, large ONe "mantle"
 - accrete to M_{Ch} short delay times

- Stellar evolution predicts "hybrid" WDs
 - e.g. Denissenkov+2013; Chen+2014
 - small CO core, large ONe "mantle"
 - accrete to M_{Ch} short delay times

- Stellar evolution predicts "hybrid" WDs
 - e.g. Denissenkov+2013; Chen+2014
 - small CO core, large ONe "mantle"
 - accrete to M_{Ch} short delay times
- → 3D deflagration simulation: 0.2 M_☉CO

Australian National University

- Stellar evolution predicts "hybrid" WDs
 - e.g. Denissenkov+2013; Chen+2014
 - small CO core, large ONe "mantle"
 - accrete to M_{Ch} short delay times
- ⇒ 3D deflagration simulation: 0.2 M
 ^o CO

✓ deflagration extinguishes in ONe (?)

- Stellar evolution predicts "hybrid" WDs
 - e.g. Denissenkov+2013; Chen+2014
 - small CO core, large ONe "mantle"
 - accrete to M_{Ch} short delay times
- ⇒ 3D deflagration simulation: 0.2 M
 ^o CO
 - ✓ deflagration extinguishes in ONe (?)
 - \checkmark 3.4 x10⁻³ M $_{\odot}$ of ^{56}Ni

Stellar evolution predicts "hybrid" WDs
e.g. Denissenkov+2013; Chen+2014
small CO core, large ONe "mantle"
accrete to M_{Ch} — short delay times
3D deflagration simulation: 0.2 M_☉ CO
✓ deflagration extinguishes in ONe (?)
✓ 3.4 x10⁻³ M_☉ of ⁵⁶Ni

- Stellar evolution predicts "hybrid" WDs
 e.g. Denissenkov+2013; Chen+2014
 small CO core, large ONe "mantle"
 - ▶ accrete to M_{Ch} short delay times
- → 3D deflagration simulation: 0.2 M_☉ CO
 ✓ deflagration extinguishes in ONe (?)
 ✓ 3.4 x10⁻³ M_☉ of ⁵⁶Ni
 - ✓ 1.39 M_☉ remnant

What about 1991T?

GCD-model of 1.4 M_o CO WD Suggested for 1991T SNe (e.g. Fisher & Jumper 2015)

Total IGE $[M_{\odot}]$	$^{56}{ m Ni}$ $[{ m M}_{\odot}]$	Total IME $[M_{\odot}]$	$^{28}{ m Si}$ $[{ m M}_{\odot}]$	$^{16}\mathrm{O}$ $[\mathrm{M}_{\odot}]$	^{12}C $[M_{\odot}]$
1.0517	0.9367	0.2629	0.1574	0.0686	0.0113

Seitenzahl+ (in prep)

- > CO WD in binary system with other WD after common envelope phase
- For right mass ratio, accretion stream triggers He-shell and C/O core detonations
 - primary WD burns almost hydrostatically
 - secondary WD may (or possibly may not) burn explosively

- > CO WD in binary system with other WD after common envelope phase
- For right mass ratio, accretion stream triggers He-shell and C/O core detonations
 - primary WD burns almost hydrostatically
 - secondary WD may (or possibly may not) burn explosively

- > CO WD in binary system with other WD after common envelope phase
- For right mass ratio, accretion stream triggers He-shell and C/O core detonations
 - primary WD burns almost hydrostatically
 - secondary WD may (or possibly may not) burn explosively

violent merger of two WDs AREPO code

- > CO WD in binary system with other WD after common envelope phase
- For right mass ratio, accretion stream triggers He-shell and C/O core detonations
 - primary WD burns almost hydrostatically
 - secondary WD may (or possibly may not) burn explosively

CO WD in binary system with other WD after common envelope phase

- For right mass ratio, accretion stream triggers He-shell and C/O core detonations
 - primary WD burns almost hydrostatically
 - secondary WD may (or possibly may not) burn explosively

violent merger of two WDs AREPO code

> CO WD in binary system with other WD after common envelope phase

- For right mass ratio, accretion stream triggers He-shell and C/O core detonations
 - primary WD burns almost hydrostatically
 - secondary WD may (or possibly may not) burn explosively

- CO WD in binary system with other WD after common envelope phase
- For right mass ratio, accretion stream triggers He-shell and C/O core detonations
 - primary WD burns almost hydrostatically
 - secondary WD may (or possibly may not) burn explosively

violent merger of two WDs AREPO code

- primary WD burns almost hydrostatically
- secondary WD may (or possibly may not) burn explosively
N100 delayed-detonation (Seitenzahl+2013) 1.1+0.9 Msun violent merger (Pakmor+2012)

Spectral comparison inconclusive

Spectral comparison inconclusive

Nucleosynthesis constraints Mn from SNe Ia

log(⁵⁵Co) mass fraction

peak Temperature [10⁹ K]

Nucleosynthesis constraints Mn from SNe Ia

- ⁵⁵Co → ⁵⁵Fe → ⁵⁵Mn
- ⁵⁶Ni → ⁵⁶Co → ⁵⁶Fe
- 1: low entropy NSE
 most ⁵⁵Co is produced here
- > 2: high entropy NSE ⁵⁵Co(p,g)⁵⁶Ni destroys ⁵⁵Co
- 3: incomplete Si-burning some ⁵⁵Co is produced here
 - Densities in merger model too low to enter [1]

Nucleosynthesis constraints Mn from SNe Ia

- ⁵⁵Co → ⁵⁵Fe → ⁵⁵Mn
- ⁵⁶Ni → ⁵⁶Co → ⁵⁶Fe
- 1: low entropy NSE
 most ⁵⁵Co is produced here
- > 2: high entropy NSE ⁵⁵Co(p,g)⁵⁶Ni destroys ⁵⁵Co
- 3: incomplete Si-burning some ⁵⁵Co is produced here
 - Densities in merger model too low to enter [1]
 - Merger model produces less
 ⁵⁵Co for same ⁵⁶Ni

model name	SN type	masses	[Mn/Fe]
N100	Ia	near-M _{Ch}	0.33
N5def	Ia	near-M _{Ch}	0.36
N150def	Ia	near-M _{Ch}	0.42
W7	Ia	near-M _{Ch}	0.15
W7	Ia	near-M _{Ch}	0.02
1.1_0.9	Ia	sub-M _{Ch}	-0.15 ^a
$1.06~\mathrm{M}_\odot$	Ia	sub-M _{Ch}	-0.13 ^a
$WW95B^b$	II	$11 < M/M_{\odot} < 40$	-0.15 ^c
$LC03D^d$	II	$13 < M/M_{\odot} < 35$	-0.27 ^c
N06	II+HN	$13 < M/M_{\odot} < 40$	-0.31 ^c

model name	SN type	masses	[Mn/Fe]		
To explain	the Mn to	Fe ratio in the Sun,	SNe la		
from near-M _{ch} primaries must exist!					
IN I JUUCI	1a	ncar-wich	0.42		
W7	Ia	near-M _{Ch}	0.15		
W7	Ia	near-M _{Ch}	0.02		
1.1_0.9	Ia	sub-M _{Ch}	-0.15 ^a		
$1.06~\mathrm{M}_\odot$	Ia	sub-M _{Ch}	-0.13 ^a		
$WW95B^b$	II	$11 < M/M_{\odot} < 40$	-0.15 ^c		
$LC03D^d$	II	$13 < M/M_{\odot} < 35$	-0.27^{c}		
N06	II+HN	$13 < M/M_{\odot} < 40$	-0.31 ^c		

model name	SN type	masses	[Mn/Fe]			
To explain the Mn to Fe ratio in the Sun, SNe la						
from near-M _{ch} primaries must exist!						
IN I JUUCI	1a	mear-wich	0.42			
2002cx-like SNe don't produce enough Fe to						
account for solar Mn/Fe.						
$1.06 \ \mathrm{M}_{\odot}$	Ia	sub-M _{Ch}	-0.13^{a}			
WW95B ^{b}	II	$11 < M/M_{\odot} < 40$	-0.15 ^c			
$LC03D^d$	II	$13 < M/M_{\odot} < 35$	-0.27^{c}			
N06	II+HN	$13 < M/M_{\odot} < 40$	-0.31 ^c			

Table 1. Combined ⁵⁵Co and ⁵⁵Fe yields in solar masses as a function of progenitor ZAMS metallicity.

model name	$1.0 Z_{\odot}$	$0.5Z_{\odot}$	$0.1\mathrm{Z}_{\odot}$	$0.01Z_{\odot}$
N100 (del. det.)	1.34e-2	1.11e-2	8.70e-3	7.84e-3
1.1_0.9 (merger)	3.85e-3	2.57e-4	7.93e-5	9.46e-5

Seitenzahl et al. (2015), MNRAS, 447, 1484

Ejected masses from bolometric light curves

Explosion simulations connect progenitor models and observations

- Explosion simulations connect progenitor models and observations
- Some progress:

- Explosion simulations connect progenitor models and observations
- Some progress:
 - ✓ M_{Ch} primaries should exist

- Explosion simulations connect progenitor models and observations
- Some progress:
 - M_{Ch} primaries should exist
 - SNe lax likely pure deflagrations in CO and possibly hybrid WDs

- Explosion simulations connect progenitor models and observations
- Some progress:
 - M_{Ch} primaries should exist
 - SNe lax likely pure deflagrations in CO and possibly hybrid WDs
- Currently far from unified model that fulfils all constraints:

- Explosion simulations connect progenitor models and observations
- Some progress:
 - M_{Ch} primaries should exist
 - SNe lax likely pure deflagrations in CO and possibly hybrid WDs
- Currently far from unified model that fulfils all constraints:
 - ✓ rates and delay times
 - ✓ spectra and light curves
 - nucleosynthesis and chemical evolution
 - pre-explosion progenitors
 - post-explosion companions (SNRs)
 - ✓ CSM interaction
 - ✓ SNR morphology … and many more
- Clearly, also need more funding!

- Explosion simulations connect progenitor models and observations
- Some progress:
 - M_{Ch} primaries should exist
 - SNe lax likely pure deflagrations in CO and possibly hybrid WDs
- Currently far from unified model that fulfils all constraints:
 - ✓ rates and delay times
 - ✓ spectra and light curves
 - nucleosynthesis and chemical evolution
 - pre-explosion progenitors
 - post-explosion companions (SNRs)
 - ✓ CSM interaction
 - ✓ SNR morphology … and many more
- Clearly, also need more funding!

END