Vela Jr.: Then and There

G. E. Allen, K. Chow, T. DeLaney, M. D. Filipović, J. C. Houck, T. G. Pannuti, M. D. Stage

2015, ApJ, 798, 82

Résumé

- a.k.a. RX J0852.0-4622, G266.2-1.2, Vela-Z
- \bullet Discovered in ROSAT all-sky survey data (Aschenbach 1998)
- Nearly 2°-diameter shell
- Along the same line of sight as, and dominated by, Vela at X-ray energies below 1 keV
- Low X-ray surface brightness
- X-ray emission dominated by synchrotron radiation
- No evidence of thermal X-ray emission
- \bullet Emits radio, GeV, and TeV photons
- Compact, X-ray-emitting object near the geometric center

Gallery

Chandra 2003

Chandra 2008

Radial profile

Confidence contours

Mean results

Quantity	Region A	Region B	Mean
$\Delta \theta \; (\mathrm{arcsec})$	1.98 ± 0.72	3.03 ± 0.89	2.40 ± 0.56
$\dot{\theta} = \Delta \theta / \Delta t \text{ (arcsec yr}^{-1)}$	0.35 ± 0.13	0.54 ± 0.16	0.42 ± 0.10
$\dot{\theta}/\theta~(\%~{ m yr}^{-1})$	0.113 ± 0.047	0.172 ± 0.061	0.136 ± 0.042

XMM: 0.84 \pm 0.23 arcsec yr^{-1} (Katsuda et al. 2008)

Hydrodynamics

To obtain the age from $\dot{\theta}/\theta = v_{\rm f}/R_{\rm f}$ requires some information about the unknown evolutionary state.

Truelove and McKee (1999) characterize $R_{\rm f}$ and $v_{\rm f}$ as functions of a dimensionless age $t/t_{\rm ch}$ and of the initial conditions E_0 , $M_{\rm ej}$, n, and n_0 .

Since the initial conditions are unknown, the values of $R_{\rm f}$ and $v_{\rm f}$ were computed at each one of the 2.35 billion points of a 5-dimensional grid where

- $E_0 = 10^{49}, 10^{49.05}, \dots, 10^{53} \text{ erg},$
- $M_{\rm ej} = 10^0, \, 10^{0.05}, \, \dots, \, 10^2 \, M_{\odot},$
- n = 6, 7, 8, 9, 10, 12, 14,
- $n_0 = 10^{-5}, 10^{-4.95}, \dots, 10^0 \text{ cm}^{-3}, \text{ and}$
- $t/t_{\rm ch} = 0.01, \, 0.02, \, \dots, \, 9.99.$

Hydrodynamics cont.

The 57.4 million valid scenarios (i.e. ages) are those where

- $0.094 \le v_{\rm f}/R_{\rm f} = \dot{\theta}/\theta < 0.178 \,\,{\rm kyr}^{-1},$
- $v_{\rm f} \ge 1000 \ {\rm km \ s^{-1}}$,
- the inferred thermal X-ray emission does not exceed the emission along the line of sight ($\rightarrow n_0 < 0.4 \text{ cm}^{-3}$), and
- $E_{kT} + E_{KE} + E_{cr,p} \le E_0$ (Aschenbach 2013).

The plausible ages are

- 2.2–8.4 kyr (full range),
- \bullet 2.4–5.1 kyr (90% range), and
- up to a factor 1.5 higher if the remnant is expanding into a steady wind.

When

Plausible distances

Where

Conclusions

• Measurement:

- Chandra data suggest that the northwestern rim of Vela Jr. is expanding by $0.42\pm0.10~{\rm arcsec~yr^{-1}}.$
- Then:
 - If this rate is representative, then Truelove and McKee's hydrodynamic models indicate the remnant is between 2.4 and 5.1 kyr old (or slightly older).
- There:
 - The preponderance of the distance constraints yield a range of 0.5–1.0 kpc.
 - The nearer of two groups of material in the Vela Molecular Ridge is 0.7 \pm 0.2 kpc (Liseau et al. 1992).
 - The Vel OB1 association is 0.8 kpc (Eggen 1982).