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What is the mechanism of explosion?



Let’s assume that the delayed-
neutrino mechanism works

What are the conditions for 
explosion?



Imagine…
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An explosion condition that
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…is derived analytically (not heuristic) 

…identifies how close a simulation is to 
explosion. 

…can predict which of T. Sukhbold’s 
progenitors will explode.
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Applied to Simulations…
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So what is          ? 
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So what is          ? 
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Before I derive this, let me set the stage



1.4 M!, R ~3000 km 
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.



Fundamental Question of 
Core-Collapse Theory

?

Stalled Shock Explosion

Murphy et al. 2013



What are the conditions for 
shock revival?



A couple of examples
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Figure 7. Maximum gravitational PNS masses as a function of the bounce
compactness (ξ2.5) for all nonrotating models presented in Table 2 that form
BHs within 3.5 s after bounce. Simulations performed with the LS180, LS220,
LS375, and HShen EOS are labeled with circles, squares, diamonds, and
triangles, respectively. Also shown (dotted lines, labeled) are the maximum
gravitational cold-neutron star (CNS) masses, MCNS

g, max, numerical values are
1.83, 2.04, 2.72, and 2.24 M⊙ for the LS180, LS220, LS375, and HShen EOS,
respectively.
(A color version of this figure is available in the online journal.)

explode. Our parameterized heating (fheat in Equation 9) allows
us to explore “how much” neutrino heating is needed to explode
a given model (in 1D). By comparison with results from previous
self-consistent radiation hydrodynamics simulations we can
then estimate whether a given progenitor and EOS combination
is more likely to lead to an explosion or BH formation.

Our method for driving explosions is similar to Murphy &
Burrows (2008), but has the advantage of being proportional
to the neutrino luminosity obtained from the neutrino leakage
scheme and therefore conserves energy. We iteratively deter-
mine the critical value of fheat to within 1% to what is needed
for a successful explosion for a large subset of our models and
the LS180, LS220, and HShen EOS. Of particular interest in this
analysis is the time-averaged heating efficiency of the critical
model, η̄crit

heat. We define η̄heat as

η̄heat =
∫

gain
q̇+

ν dV

/ (
Lνe

+ Lν̄e

)
rgain

, (14)

where q̇+
ν is the net energy deposition rate and the neutrino

luminosities are taken at the gain radius. We perform the time
average between bounce and explosion, the latter time defined
as when the postshock region assumes positive velocities and
accretion onto the PNS ceases. η̄crit

heat is a useful quantity because
it characterizes how much of the available luminosity must be
redeposited on average to explode a given progenitor. This is
rather independent of transport scheme and code. For example,
for the 15 M⊙ ZAMS solar-metallicity progenitor of Woosley
& Weaver (1995) we find η̄crit

heat ∼ 0.13. Buras et al. (2006b) who
also artificially exploded this progenitor in 1D, though with
much more sophisticated neutrino transport, find1 an average
heating efficiency of 0.1–0.15 which is consistent with our
result. Note, however, that Marek & Janka (2009) observed
in the same progenitor the onset of a self-consistent neutrino-
driven explosion in 2D at an average heating efficiency of ∼0.07.

1 This we deduce from their Figure 28, bottom panel. Note that their δtEcool
includes all neutrinos, not just νe and ν̄e .

Figure 8. η̄crit
heat obtained with GR1D as a function of bounce compactness. Plotted

are models from the sWH07 data set using the LS180, LS220, and HShen EOS;
and models from the uWHW02 data set using the LS220 EOS.
(A color version of this figure is available in the online journal.)

This indicates a dependence of η̄crit
heat on dimensionality, should

be kept in mind, and is consistent with recent work that suggest
that dimensionality may be the key to successful neutrino-driven
explosions (Murphy & Burrows 2008; Nordhaus et al. 2010).

Since GR1D’s leakage/heating scheme is only a rough approx-
imation to true neutrino transport, and because our simulations
assume spherical symmetry, we cannot make very robust quan-
titative predictions for any one particular model, but rather study
the collective trends exhibited by the entire set of 62 progeni-
tors that we consider here. In Figure 8, as a function of bounce
compactness ξ2.5, we plot η̄crit

heat for all considered models and
EOS. The data are summarized in Table 4. We can divide the
results into two general regimes: models with ξ2.5 ! 0.45 and
those with ξ2.5 " 0.45.

For many models with ξ2.5 ! 0.45, oscillations in the
shock position are ubiquitous near the transition from failing
to exploding supernovae in 1D (cf. Murphy & Burrows 2008;
Buras et al. 2006b; Fernández & Thompson 2009). For both
the LS180 and LS220 EOS, the η̄crit

heat required for an explosion,
modulo noise, is roughly constant and ∼0.16 on average for
low ξ2.5 models. Hence, explosion is the likely outcome of core
collapse for progenitors with ξ2.5 ! 0.45 if the nuclear EOS is
similar to the LS180 or LS220 case.

The noise in the η̄crit
heat distribution (absolute variations by up

to ∼10%) is in part a consequence of variations in postbounce
dynamics, such as the number and duration of pre-explosion os-
cillations. Compositional interfaces in some progenitor models,
where jumps in the density lead to jumps in the accretion rate,
also affect individual models leading to variations in η̄crit

heat. For
the LS180 and LS220 EOS, any differences in η̄crit

heat with choice
of EOS are indistinguishable given the noise in the data.

For progenitors with ξ2.5 " 0.45, the η̄heat required to cause
an explosion increases with ξ2.5 when run with the LS180
or LS220 EOS. Progenitors in this regime have tremendous
postbounce accretion rates, accumulating "2 M⊙ of baryonic
material behind the shock within the first ∼200 ms after bounce.
Without explosion, they form BHs within !0.8 s (with the
LS180 and LS220 EOS). Hence, a very high heating efficiency
of η̄heat " 0.23–0.27 is necessary to drive an explosion at early
times against the huge ram pressure of accretion. It appears
unlikely, even when multi-dimensional dynamics are factored
in, that progenitors with ξ2.5 " 0.45 can be exploded via the

11



Ertl et al. 2015
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Fig. 7.— Separation curves between BH formation (gray region, black symbols) and SN explosions (white region, colored symbols) for all calibrations in the
plane of parameters x = M4µ4 and y = µ4 (zooms in right panels). Note that the left panels do not show roughly two dozen BH-forming models of the u2002
series, which populate the x-range between 0.5 and 0.62 and are o↵ the displayed scale. Di↵erent symbols and colors correspond to the di↵erent progenitor sets.
The locations of the calibration models are also indicated by black circles with red plus-sign.

lates into an abrupt decrease in Ṁ when the mass M4 accretes.
Figure 14 of Sukhbold & Woosley (2014) shows a strong cor-
relation between compactness ⇠2.5 and location of the oxygen
shell. The decrease of the mass accretion rate is abrupt only
if the entropy change is steep with mass, for which µ4 at M4
is a relevant measure.

Progenitors with MZAMS . 22 M� that are harder to explode
often have relatively small values of M4 and an entropy ledge
above s = 4 on a lower level than the entropy reached in
more easily exploding stars. The lower neutrino luminosity
associated with the smaller accretor mass in combination with
the higher ram pressure can prohibit shock expansion in many
of these cases. Corresponding to the relatively small values of
M4 and relatively higher densities outside of this mass, these
cases stick out from their neighboring stars with respect to the
binding energy of overlying material, namely, non-exploding
models in almost all cases are characterized by local maxima
of Eb(m > M4) (see Fig. 8).

In view of this insight it is not astonishing that exploding
and non-exploding progenitors can be seen to start separating

from each other in the two-parameter space spanned by M4
and the average entropy value hsi4 just outside of M4 (Fig. 9).
Averaging s over the mass interval [M4,M4+0.5M�] turns out
to yield the best results. Exploding models cluster towards
the side of high hsi4 and low M4, while failures are found
preferentially for low values of hsi4. The threshold for success
tends to grow with M4. However, there is still a broad band
where both types of outcomes overlap. The disentanglement
of SNe and BH-formation events is clearly better achieved by
the parameter set of M4µ4 and µ4, which, in addition, applies
correctly not only for stars with MZAMS � 15 M� but also for
progenitors with lower masses.

3.3. Stellar outliers
Out of 621 simulated stellar models for the s19.8, w15.0,

w18.0, w20.0, and n20.0 calibrations only 9, 14, 16, 11, and 9
models, respectively, do not follow the behavior predicted by
their locations on the one or the other side of the separation
line in the M4µ4-µ4 plane (see the zooms in the right column
of Fig. 7). But most of these cases lie very close to the bound-
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Fig. 2.— Critical curves for the electron-neutrino luminosity (Lνe ) versus mass accretion rate (Ṁ) (left plot) and versus explosion time texp (right plot) for
simulations in 1D (black), 2D (blue), and 3D (red) with standard resolution. The accretion rate is measureed just outside of the shock at the time texp when the
explosion sets in. The results of the 11.2M⊙ models are represented by plus symbols and those of the 15M⊙ models by diamonds. All models were computed
with standard resolution.
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Fig. 3.— Time evolution of the average shock radius as function of the post-
bounce time tpb for simulations in one (thin dashed lines), two (thin solid
lines), and three dimensions (thick lines). The shock position is defined as
the surface average over all angular directions. The top panel shows results
for the 11.2M⊙ progenitor and the bottom panel for the 15M⊙ progenitor, all
obtained with our standard resolution. Different electron-neutrino luminosi-
ties (labelled in the plots in units of 1052 erg s−1) are displayed by different
colors.

sion by 15–25% compared to the 2D case.
Despite the basic agreement of the outcome of these investi-

gations it should be kept in mind that it is not ultimately clear
whether the simple concept of a critical threshold condition
separating explosions from failures (and the dependences of
this threshold on dimension and rotation for example) holds
beyond the highly idealized setups considered in the men-

tioned works. None of the mentioned systematic studies by
steady-state or hydrodynamic models was able to include ad-
equately the complexity of the feedback between hydrody-
namics and neutrino transport physics. In particular, none of
these studies could yield the proof that the non-existence of
a steady-state accretion solution for a given combination of
mass accretion rate and neutrino luminosity is equivalent to
the onset of an explosion. The latter requires the persistence
of sufficiently strong energy input by neutrino heating for a
suffiently long period of time. This is especially important
because Pejcha & Thompson (2011) showed that the total en-
ergy in the gain layer is still negative even in the case of the
limiting accretion solution that corresponds to the critical lu-
minosity. Within the framework of simplified modeling se-
tups, however, the question cannot be answered whether such
a persistent energy input can be maintained in the environ-
ment of the supernova core.
Following the previous investigations by

Murphy & Burrows (2008) and Nordhaus et al. (2010)
we performed hydrodynamical simulations that track the
post-bounce evolution of collapsing stars for different, fixed
values of the driving neutrino luminosity. Since the mass
accretion rate decreases with time according to the density
profile that is characteristic of the initial structure of the
progenitor core (see Fig. 1 for the 11.2 and 15M⊙ stars
considered in this work), each model run probes the critical
value of Ṁexp at which the explosion becomes possible for
the chosen value of Lν = Lνe = Lν̄e . The collection of
value pairs (Ṁexp,Lνe) defines a critical curve Lν(Ṁ). These
are shown for our 1D, 2D, and 3D studies with standard
resolution for both progenitor stars in the left panel of Fig. 2
and in the case of the 15M⊙ star can be directly compared
with Fig. 1 of Nordhaus et al. (2010). Table 1 lists, as a
function of the chosen Lνe , the corresponding times texp when
the onset of the explosion takes place and the mass accretion
rate has the value of Ṁexp. The post-bounce evolution of a
collapsing star proceeds from high to low mass accretion rate
(Fig. 1), i.e., from right to left on the horizontal axis of the
left panel of Fig. 2. When Ṁ reaches the critical value for
the given Lνe , the model develops an explosion. The right
panel of Fig. 2 visualizes the functional relations between the
neutrino luminosities Lνe and the explosion times texp for both
progenitors and for the simulations with different dimensions.

Hanke et al 2011
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Figure 4. Neutrino luminosity versus mass accretion rate at time of explosion (left panel) and time of explosion (right panel) for the three EOS considered in this
work. Results from both 1D (dashed lines) and 2D (solid lines) are shown. For each EOS explosions are found more easily in 2D than in 1D. The Lattimer &
Swesty EOS result in easier explosions in both 1D and 2D than the Shen et al. EOS.
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Figure 5. Shock radii as a function of time for STOS, LS220, and LS180 in 1D (left) and 2D (right). Three different neutrino luminosities are plotted for each
EOS in each panel, as labeled.

that “outflow” boundary conditions can, in this way, suppress
explosions for neutrino luminosities near critical. For all of
our simulations, we use the 15 M� progenitor of Woosley &
Weaver (1995).

We have incorporated the finite temperature equation of state
routines of O’Connor & Ott (2010) into the FLASH frame-
work4. We use three different EOS models in our simulations,
the models of Lattimer & Swesty (1991) with incompressibil-
ity, K, of 180 MeV and 220 MeV and that of Shen et al. (1998).
Some parameters for these EOS are listed in Table 1.

3. RESULTS
3.1. Dependence on EOS

We ran a series of core collapse simulations in 1D and 2D in
which we varied the driving neutrino luminosity. For models
that explode, we measure the post-bounce time of the explo-
sion and the mass accretion rate at the time of explosion. We
consider a model to have exploded if the average shock radius
exceeds 400 km and does not subsequently fall back below
400 km. We measure the mass accretion rate at a radius of

4 These routines are available for download at stellarcollapse.org.

500 km in both 1D and 2D simulations, though the measured
mass accretion rates are identical since the 2D solution remains
spherically-symmetric outside of the shock. Figure 3 shows
our measured mass accretion rates as a function of time post-
bounce for the three EOS we consider. Our mass accretion rate
is very similar to that of Hanke et al. (2011) for their 15 M�
progenitor model. The differences in mass accretion history
between STOS and LS can be attributed to models using STOS
collapsing and bouncing a little faster than models using LS;
bounce occurs 50 ms earlier for STOS as compared to LS.
Table 2 summarizes the simulations we ran and the resulting
explosion times and mass accretion rates at the time of explo-
sion. In Figure 4 we plot the driving neutrino luminosities as a
function of explosion time and mass accretion rate at the time
of explosion.

Our results show that the Lattimer & Swesty EOS explode
more easily than that of Shen et al., with LS180 resulting in
the earliest explosions for a given neutrino luminosity (lowest
curves in Fig. 4). The results then follow a basic trend that the
stiffer the EOS, the harder it is to drive an explosion (LS180
being the softest EOS and STOS being the stiffest EOS we
consider). This trend holds in both 1D and 2D simulations. For

Couch 2012



2D & 3D critical luminosity 
lower than 1D  

 
Turbulence plays an important 

role!

Murphy & Burrows 2008
Murphy & Meakin 2012
Burrows, Dolence, and Murphy 2012
Murphy, Burrows,  and  Dolence 2013
Dolence, Burrows, and Murphy 2013
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Can one derive this line?
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Can one derive the reduction due
to turbulence?
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Let’s start with two assumptions:
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2. Integral condition will be illuminating
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Let’s start with two assumptions:
1. vs ≥ 0 is the condition for explosion
2. Integral condition will be illuminating

or

Will use vs ≥ 0 to derive an integral condition 
for explosion.
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In steady state…
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In steady state…



Energy equation
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Momentum equation
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Momentum equation
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Validation with Simulation
Momentum equation



Validation with simulation
Energy equation



Simulations Ψ ≥ 0 suggests
we’re on right track

nearness-to-explosion?



Momentum equation

Need Analytic expressions for



Solution strategy:
• Pick a trial Rs

• Find (semi-)analytic solution for y and z 
between RNS and Rs

• Evaluate Ψ for this particular solution, it 
might be > 0, = 0, or < 0

• Repeat Need Analytic expressions for



This family of solutions all have the same 
Lν, Tν, MNS, M, RNS

.





Ψmin = 0 gives critical 
set of parameters
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Use Ψmin to derive Lν-M critical curve
.



vs ≥ 0
Ψmin ≥ 0

Explosions

Steady State



vs ≥ 0
Ψmin ≥ 0

The Lν-M is only a slice (or projection)

The full condition is Ψmin ≥ 0
Tν, RNS, MNS were fixed
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Use Ψmin to evaluate nearness-to-explosion 
in 1D simulations
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Applied to Simulations…
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Summary
• derive Ψmin ≥ 0 from vs ≥ 0
• Explains Lν-M curve
• Lν-M is a special case of  Ψmin ≥ 0
• nearness-to-explosion condition

.
.
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Future Work
• Derive Ψmin ≥ 0 with turbulence
• Toward a truly analytic solution
• GR
• Compare with self-consistent 1D and 

3D simulations
• Derive MNS, M, Lν, and Tν from 

progenitor

.


