Condition for Explosion

by Jeremiah W. Murphy (Florida State University)

An Integral Condition for the Explosion of Core-collapse SNe

by Jeremiah W. Murphy (Florida State University) & Joshua Dolence (LANL)

What is the mechanism of explosion?

Let's assume that the delayedneutrino mechanism works

What are the conditions for explosion?

Imagine...

An explosion condition that

... is derived analytically (not heuristic)

...identifies how close a simulation is to explosion.

...can predict which of T. Sukhbold's progenitors will explode.

An explosion condition that

... is derived analytically (not heuristic)

...identifies how close a simulation is to explosion.

...can predict which of T. Sukhbold's progenitors will explode.

So what is Ψ_{\min} ?

So what is Ψ_{\min} ?

Before I derive this, let me set the stage

 $1.4 \text{ M}_{\odot}, \text{R} \sim 3000 \text{ km}$ $T_{dyn} \sim 150 \text{ ms}$ PNS, Final R~ 40 km

Progenitor Stars $\sim 8 M_{\odot} < M < \sim 40-100 M_{\odot}$

н

He

С

Ne

0

Si

Fe

The Shock Stalls Nuclei break apart, e⁻ cap, v losses Accretion shock (r ~200 km)

The Shock Stalls Nuclei break apart, e⁻ cap, v losses Accretion shock (r ~200 km)

Neutrino interactions $L_v \sim few \ge 10^{52} \text{ erg/s}$ cooling heating

Important Parameters:

Fundamental Question of Core-Collapse Theory

Explosion

Stalled Shock

What are the conditions for shock revival?

$v_s \ge 0$

A couple of examples

$v_s \ge 0$

Heat

Cool

 $\tau_{\mathbf{q}} = \frac{\mathbf{E}}{\mathbf{Q}}$ $\tau_{\mathbf{adv}} = \frac{\mathbf{\Delta r}}{\mathbf{v}}$

Heat

Cool

Cool

 $\tau_{q} = \frac{E}{Q}$ $\tau_{adv} = \frac{\Delta r}{v}$

 $\frac{\tau_{adv}}{\tau_{q}} \gtrsim 1$

But this is order of magnitude

Heat

Cool

O'CONNOR & OTT

Ertl et al. 2015

Burrows & Goshy '93 Steady-state solution (ODE)

M

Murphy & Burrows '08

2D & 3D critical luminosity lower than 1D

Turbulence plays an important role!

Murphy & Burrows 2008 Murphy & Meakin 2012 Burrows, Dolence, and Murphy 2012 Murphy, Burrows, and Dolence 2013 Dolence, Burrows, and Murphy 2013

M

Yes

Let's start with two assumptions:

- 1. $v_s \ge 0$ is the condition for explosion
- 2. Integral condition will be illuminating

Let's start with two assumptions: 1. $v_s \ge 0$ is the condition for explosion 2. Integral condition will be illuminating

Let's start with two assumptions: 1. $v_s \ge 0$ is the condition for explosion 2. Integral condition will be illuminating

$$\frac{d^2x}{dt^2} = \frac{f}{m} \quad \text{or} \quad \frac{1}{2}v^2 + \phi = \text{const.}$$

Will use $v_s \ge 0$ to derive an integral condition for explosion.

Governing Conservation equations

Governing Conservation equations

Governing Conservation Equations

 $\frac{\partial \rho}{\partial t} + \nabla \cdot F = S$

S

Governing Conservation Equations

$$\frac{\partial \rho}{\partial t} + \nabla \cdot F = S$$

S

Change of mass in region 1 = $A_s(\rho_1 - \rho_2)v_s$ In steady state...

$A_s(\rho_1 - \rho_2)v_s = F_1A_1 - F_2A_2 + \int S \, dV$

In steady state...

$A_s(\rho_1 - \rho_2)v_s = F_1A_1 - F_2A_2 + \int S \, dV$ $v_s \ge 0$

In steady state...

 $A_s(\rho_1 - \rho_2)v_s = F_1A_1 - F_2A_2 + \int S \, dV$ $v_s > 0$ $F_1A_1 - F_2A_2 + \int S \, dV \ge 0$

Energy equation $v_s \ge 0$

Energy equation $v_s \ge 0$

$\left(\frac{h}{\phi}\right)_{\rm NS} \le 1 + \frac{L_{\nu}\tau - C}{\dot{M}\phi_{\rm NS}}$

Energy equation $v_s \ge 0$

$\left(\frac{h}{\phi}\right)_{\rm NS} \le 1 + \frac{L_{\nu}\tau - C}{\dot{M}\phi_{\rm NS}}$

 $\Sigma \ge 0$

Momentum equation

 $v_s \ge 0$

Momentum equation

 $v_s \ge 0$

Momentum equation $v_s \ge 0$

$$y_1 + \int_1^{x_s} (2y - 1) \, z \, dx \ge 2z_2 x_s$$

Momentum equation $v_s \ge 0$

$$y_{1} + \int_{1}^{x_{s}} (2y - 1) z dx \ge 2z_{2}x_{s}$$

Need Analytic expressions for
$$\Psi \ge 0$$
$$x = \frac{r}{r_{\text{NS}}} \quad y = \frac{P}{\rho\phi} \quad z = \frac{\rho}{\rho_{\text{NS}}}$$

Solution strategy:

- Pick a trial R_s
- Find (semi-)analytic solution for y and z between R_{NS} and R_s
- Evaluate Ψ for this particular solution, it might be > 0, = 0, or < 0
- Repeat Need Analytic expressions for

Use Ψ_{min} to derive L_v -M critical curve

Use Ψ_{\min} to evaluate nearness-to-explosion in 1D simulations

Future Work

GR

-0.5

0.3

- Derive $\Psi_{\min} \ge 0$ with turbulence
- Toward a truly analytic solution
- Compare with self-consistent 1D and
 - 3D simulations

3.3

• Derive M_{NS} , \dot{M} , L_{ν} , and T_{ν} from

0.5

Time s

0.6

progenitor