

Progenitors of electron-capture supernovae

Samuel Jones AvH Fellow @ HITS

F.O.E., Raleigh, NC 01.06.15

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Why study 8-12 $M\odot$ stars, and what are ECSNe?

Can ECSNe occur? Should we care?

Physics in the 8-12 $M\odot$ range

Why study 8-12 $M\odot$ stars, and what are ECSNe?

Can ECSNe occur? Should we care?

Physics in the 8-12 $M\odot$ range

Progenitor evolution for ECSNe

(ONe core-collapse SNe)

Miyaji+ (1980); Nomoto (1984, 1987); Miyaji & Nomoto (1987); Ritossa+ (1999); Poelarends+ (2008); Jones+ (2013); Takahashi+ (2013)

- I. Formation of degenerate ONe core through C-burning
- 2. Growth of core towards $M_{\mbox{Ch}}$
- 3. Electron capture by ²⁴Mg
- 3. Central density reaches ρ_{crit} : $\mu_e = Q(^{20}Ne \rightarrow ^{20}F)$
- 4. Double e⁻-captures instigate collapse and heat the material to O-ignition
- 5. O-deflagration leaves NSE ash, which also captures electrons

Progenitor evolution for ECSNe

(ONe core-collapse SNe)

Jones+ (2013)

Unterstützt von / Supported by

Alexander von Humboldt

Stiftung/Foundation

Why 8-12 Mo?

THE r-PROCESS IN COLLAPSING O/Ne/Mg CORES

J. CRAIG WHEELER,¹ JOHN J. COWAN,² AND WOLFGANG HILLEBRANDT³ Received 1997 September 17; accepted 1997 November 21; published 1998 January 14 ApJ 493:L101–L104, 1998

Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae

F. S. Kitaura, H.-Th. Janka, and W. Hillebrandt

A&A 450, 345-350 (2006)

Wanajo+ (2011)

Stiftung/Foundation

Why 8-12 Mo?

Fig.4. From the left [Eu/Y], [Eu/Fe] and [Eu/Ba] vs [Fe/H] in the halo; the density plot is the distribution of simulated long-living stars for our halo models, see bar below Fig. [] for the color scale; the data are the same as Fig. [].

Cescutti & Chiappini (2014)

Why study 8-12 $M\odot$ stars, and what are ECSNe?

Can ECSNe occur? Should we care?

Physics in the 8-12 $M\odot$ range

 $\lambda = 0$

Mhigh

 (M_{\odot})

9.25

9.25

9.25

erg g

 $\epsilon_{\rm nuc}$

Initial mass range for ECSNe

Contraction supports	" Y
Alexander von	Humboldt
Stiftung	/Foundation

% EC

19.7

6.2

7.1

TABLE 3

OF THE DREDGE-UP EFFICIENCY AND MASS-LOSS PRESCRIPTION

 $M \in S \land M$ model of dredge-out in a 7 Mo Z=0.001 star

Stiftung/Foundation

Other complications in super-AGB stars

Alexander von Humboldt Stiftung/Foundation

ONe core collapse in X-ray binaries

Why study 8-12 $M\odot$ stars, and what are ECSNe?

Can ECSNe occur? Should we care?

Physics in the 8-12 $M\odot$ range

Nuclear reactions in ONe CC progenitors

Carbon deflagration, Fink+ 2014

Off-centre ignition in 8-10 $M\odot$ stars

Mass (solar masses)

Stiftung/Foundation

Off-centre silicon burning

Woosley & Heger (2015, arXiv)

Silicon flashes induce dynamical behaviour, propagating through the envelope - two supernova-like displays?

Maria Drout's Talk

Explosive silicon burning in 9.8 -10.3 M models: outcome?

Summary and open questions

The frequency (or even the occurrence) of EC-SNe from single stars unfortunately remains, for now, very uncertain. Mass loss, CBM and hydrogen ingestion events all play a role.

EC-SNe from HMXBs do not suffer the same uncertainties, however would not produce SN IIP.

Lowest-mass CCSN progenitors display similar progenitor density profiles. They themselves pose interesting questions to be addressed in the coming years with multi-dimensional hydrodynamic codes.

What are the yields form 8-10 M_{\odot} stars?

How much will the progenitor, explosion and nucleosynthesis properties change when all relevant nuclear physics is included?

How much does the ECSN picture change when multi-dimensional simulations of the O-deflagration emerge?