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CCSN Paradigm Observational Evidence

(Grefenstette et al., Nature, 2014) Milisavljevic & Fesen, Science, 2015

• X-ray: Si/Mg, 44Ti, Fe
“Sloshing” behavior
Possible 44Ti w/o Fe-group?

• Infrared: Sulfur
Bubble-like interior
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• Hydrodynamics strongly coupled to nucleosynthesis

• Detailed networks are computationally expensive

• Reduced networks exclude weak reactions and 
misestimate nuclear energy generation

Explosion
morphology

Nucleosynthesis Hydrodynamics

Mass cutNeutronization
α-rich freezeout

Reaction
channels

Nuclear energy generation

Thermodynamic conditions

Electron pressure

Nucleosynthesis in CCSN Challenges
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• Lagrangian tracer particles track 
thermodynamic history 
throughout star

• Temperature and density profile 
used to “post-process” 
nucleosynthesis with detailed 
network

• Does not capture hydrodynamic 
feedback or microscopic 
elemental mixing

• Despite deficiencies, still a major 
improvement to composition 
distribution

Nucleosynthesis in CCSN Tracer Particle Method
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• Four axisymmetric models initiated from stellar metallicity, non-rotating 
progenitors from Woosley & Heger 2007

• Computational constraints limit in situ burning to 14-species α-network

• Lagrangian tracer particles for post-processing with detailed nucleosynthesis

• Letter published on early explosion development; Full paper submitted to ApJ

Bruenn et al. 2013, ApJ, 767, L6
Bruenn et al. 2015; arXiv:1409.5779

CHIMERA “B-Series” Current Status
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Post-processing Challenges Multi-D Mass-cut

● Proto-Neutron Star (PNS)
○
○
● “Unbound” (E+ > 0), final vr > 0
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Post-processing Challenges Thermodynamic Extrapolation
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Nuclear products with sensitivity to neutrino-
induced reactions are particularly susceptible 
to extrapolation uncertainties

Post-processing Challenges Extrapolation Uncertainties
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Post-processing Challenges Resolution Uncertainties

• Extrapolation and mass-cut uncertainties 
could be reduced by extending 
simulations

• Tracer particle resolution is a more 
fundamental concern

Label Particles
Mtracer

[×10-4 M⊙]

B12-WH07 4000 1.868E-4

B15-WH07 5000 2.864E-4

B20-WH07 6000
3.545E-4

B25-WH07 8000 3.486E-4



F.O.E., NCSU
June 4, 2015

J. Austin Harris
University of Tennessee

Attempt to reproduce in situ
nucleosynthesis via post-
processing—“The 
Commutator Problem”

• No extrapolation

• α-network

• Same NSE criteria

Post-processing Challenges Resolution Uncertainties
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Nucleosynthesis in Ejecta Preliminary Results

Multi-D mass-cut
νp-process?
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Nucleosynthesis in Ejecta 44Ti without 56Ni?

Not Exactly
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Reference Mass Particles SN150

Woosley & Heger 2007
“KEPLER”

12 M⊙ ~50000 Yes

13 M⊙ ? Yes

14 M⊙ ? Yes

15 M⊙ ? Yes

20 M⊙ ? Yes

25 M⊙ ? Yes

30 M⊙ ?

35 M⊙ ?

40 M⊙ ?

Ellinger et al. 2012
“TYCHO”

12 M⊙ TBD

15 M⊙ ? Yes

Chieffi & Limongi 2013
“FRANEC”

15 M⊙ TBD

Umeda & Nomoto 2005 15 M⊙ TBD

• Large in situ network will address 
the deficiencies of the α-network 
directly

• Currently evolving models with 
150-species nuclear network

CHIMERA “D-Series” New Models
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• Simulating supernovae takes a very long time
• Code improvements help, but still a long way from the edge of the star

• Post-processing nucleosynthesis must be done with care
• Uncertainty in the “mass cut” and particle expansion timescales represent significant 

uncertainties in the final abundances
• Low tracer particle resolution in low density regions of freezeout makes abundance 

predictions on species like 44Ti extremely difficult
• Correcting for this, we see ≈1—3 × 10-4 M⊙ of 44Ti in our models

• Preliminary nucleosynthesis results from CHIMERA “B-series” runs suggests qualitative 
differences from parameterized 1D simulation of same models
• Enhanced production for many species from multi-dimensional “mass cut” and 

availability of neutrino-dependent reaction pathways

• Need larger nuclear network with sufficient reaction channels (150 species) evolved in situ to 
capture freezeout
• Computational improvements are now making this possible (large network models in 

progress)

Summary


