Predicting nucleosynthesis observables in CCSNe with self-consistent simulations

J. Austin Harris

University of Tennessee—Knoxville

Collaborators

- UT-Knoxville/ORNL
 - Reuben Budiardja*
 Merek A. Chertkow*
 Eirik Endeve
 W. Raph Hix
 Ching-Tsai Lee*
 Bronson Messer
 Tony Mezzacappa
 Konstantin Yakunin
- FAU
 - Steve Bruenn
- NC State
 - John Blondin
 Chris Mauney*
- NSF
 - Pedro Marronetti
- *Graduate students

J. Austin Harris University of Tennessee

CCSN Paradigm

Observational Evidence

(Grefenstette et al., Nature, 2014)

 X-ray: Si/Mg, ⁴⁴Ti, Fe "Sloshing" behavior Possible ⁴⁴Ti w/o Fe-group? Milisavljevic & Fesen, Science, 2015

 Infrared: Sulfur Bubble-like interior

J. Austin Harris University of Tennessee

Nucleosynthesis in CCSN

Challenges

- Hydrodynamics strongly coupled to nucleosynthesis
- Detailed networks are computationally expensive
 - Reduced networks exclude weak reactions and misestimate nuclear energy generation

J. Austin Harris University of Tennessee

Nucleosynthesis in CCSN

- Lagrangian tracer particles track thermodynamic history throughout star
- Temperature and density profile used to "post-process" nucleosynthesis with detailed network

- Does not capture hydrodynamic feedback or microscopic elemental mixing
- Despite deficiencies, still a major improvement to composition distribution

J. Austin Harris University of Tennessee

F.O.E., NCSU June 4, 2015

Tracer Particle Method

CHIMERA "B-Series"

June 4, 2015

- Four axisymmetric models initiated from stellar metallicity, non-rotating progenitors from Woosley & Heger 2007
- Computational constraints limit *in situ* burning to 14-species α-network
- Lagrangian tracer particles for post-processing with detailed nucleosynthesis
- Letter published on early explosion development; Full paper submitted to ApJ

J. Austin Harris University of Tennessee

Chimera model: B12-WH07

200.0 ms

(km)

Post-processing Challenges

Multi-D Mass-cut

J. Austin Harris University of Tennessee

Post-processing Challenges Thermodynamic Extrapolation

J. Austin Harris University of Tennessee

Post-processing Challenges Extrapolation Uncertainties

J. Austin Harris University of Tennessee

Post-processing Challenges

Resolution Uncertainties

- Extrapolation and mass-cut uncertainties could be reduced by extending simulations
- Tracer particle resolution is a more fundamental concern

Label	Particles	${ m M}_{ m tracer}$ [×10 ⁻⁴ ${ m M}_{\odot}$]
B12-WH07	4000	1.868E-4
B15-WH07	5000	2.864E-4
B20-WH07	6000	3.545E-4
B25-WH07	8000	3.486E-4

J. Austin Harris University of Tennessee

Post-processing Challenges

Resolution Uncertainties

J. Austin Harris University of Tennessee

Chimera model: B12-WH07

1336.0 ms

Nucleosynthesis in Ejecta

Preliminary Results

J. Austin Harris University of Tennessee

Nucleosynthesis in Ejecta

44Ti without 56Ni?

Not Exactly

J. Austin Harris University of Tennessee

CHIMERA "D-Series"

New Models

Reference	Mass	Particles	SN150
Woosley & Heger 2007 "KEPLER"	$12~{ m M}_{\odot}$	~50000	Yes
	$13~{ m M}_{\odot}$?	Yes
	14 ${ m M}_{\odot}$?	Yes
	$15~{ m M}_{\odot}$?	Yes
	$20~{ m M}_{\odot}$?	Yes
	$25~{ m M}_{\odot}$?	Yes
	$30~{ m M}_{\odot}$?	
	$35~{ m M}_{\odot}$?	
	$40~{ m M}_{\odot}$?	
Ellinger et al. 2012 "TYCHO"	$12~{ m M}_{\odot}$	TBD	
	$15~{ m M}_{\odot}$?	Yes
Chieffi & Limongi 2013 "FRANEC"	$15 \ { m M}_{\odot}$	TBD	
Umeda & Nomoto 2005	$15~{ m M}_{\odot}$	TBD	

- Large *in situ* network will address the deficiencies of the α-network directly
- Currently evolving models with 150-species nuclear network

J. Austin Harris University of Tennessee

Summary

- Simulating supernovae takes a very long time
 - Code improvements help, but still a long way from the edge of the star
- Post-processing nucleosynthesis must be done with care
 - Uncertainty in the "mass cut" and particle expansion timescales represent significant uncertainties in the final abundances
 - Low tracer particle resolution in low density regions of freezeout makes abundance predictions on species like ⁴⁴Ti extremely difficult
 - Correcting for this, we see $\approx 1-3 \times 10^{-4}$ M_{\odot} of ⁴⁴Ti in our models
- Preliminary nucleosynthesis results from CHIMERA "B-series" runs suggests qualitative differences from parameterized 1D simulation of same models
 - Enhanced production for many species from multi-dimensional "mass cut" and availability of neutrino-dependent reaction pathways
- Need larger nuclear network with sufficient reaction channels (150 species) evolved *in situ* to capture freezeout
 - Computational improvements are now making this possible (large network models in progress)

J. Austin Harris University of Tennessee

