Dependence of Spectra on Metallicity in Type Ia Supernova Models

THE UNIVERSITY OF ALABAMA®

BROXTON J. MILES DANIEL VAN ROSSUM DEAN TOWNSLEY AND OTHERS

Fifty One Ergs NCSU <u>June 4, 2</u>015

STUDY OVERVIEW

Through a combination of hydrodynamic simulations, particle post-processing, and radiative transfer calculations, we investigate the effects of progenitor metallicity on multiple features of type la supernovae:

- Nucleosynthetic yields
- Spectra

PROGENITOR MODELS

- Selected two previously studied models from Krueger et al 2012
 2D
 DDT
 DDT-H (D20 R01)

 .8M_☉ ⁵⁶Ni

 DDT-L (D20 R10)
 - ■.7M_☉ ⁵⁶Ni

HYDRODYNAMICS

- FLASH 3.0
- Run for 4 seconds of simulation time
- Both hydro simulations run at <u>one</u> metallicity
- 100,000 Lagrangian tracer particles produced for post-processing.

PARTICLE POST PROCESSING

- Lagrangian temperature-density histories postprocessed through 225-specie nuclear network
- Initial abundances are varied with metallicity
 - ■Z/Z_☉= 0.1, 0.5, 1.33, 2.0, 3.0, 4.0

YIELD PROFILES

How does the distribution of ejecta material change with metallicity?

Characteristic Si (6150Å) feature remains fairly static
Changes with metallicity are most readily seen in days 10, 20, and 30.

- An increase in metallicity causes a decrease in ⁵⁶Ni production.
 - This affects the temperature of the ejecta which in turn affects spectral color
 - So how do we differentiate between temperature and abundance effects?

- It appears at the feature around 3200
 Å is being strongly affected by the change in temperature
- A feature at 4200Å at day 30 appears to be changing due to abundance changes
- What elements can it be attributed to?

KNOCKOUT SPECTRA

- Contribution by elements
 - Above continuum: absorption
 - Below continuum: emission
- The feature at 4200 Å is most affected by the production of Ti and Fe

TI AND FE YIELD PROFILES

 Though not a very abundant constituent, Ti has a strong absorption effect

 Ti and Fe are both very sensitive to the progenitor metallicity

CONCLUSIONS

We post-processed and ran radiative transfer calculations over two, 2D simulations to attempt to find an indicator of progenitor metallicity in Type Ia supernovae spectrum

- It may be difficult to differentiate between temperature effects from ⁵⁶Ni production and abundance effects
- Two features from Ti and Fe at 4200 and 5000 Å provide possibilities when used in conjunction with the relatively static Si feature at 6150 Å