MAGNESIUM-RICH EJECTA IN SNR G284.3-1.8 AROUND 1FGL J1018.6-5856

Brian J.Williams (NASA GSFC / CRESST/USRA) Blagoy Rangelov (George Washington University) Oleg Kargaltsev (George Washington University) George Pavlov (Penn State University)

This talk is based on new Chandra and archival XMM-Newton observations Williams et al. (2015), ApJ, submitted

A Talk in Three Acts

Act I: Spectral/spatial analysis of J1018

Act II: Binary evolution modeling

Act III: Spectral analysis of G284.3-1.8

Encore: Conclusions

Meet 1FGL J1018.6-5856...

- X-ray point source... or is it? Check w/Chandra
- Power-law spectrum:
 - $N_H = 8 \times 10^{21} \text{ cm}^{-2}$
 - **F** phase-dependent: 1.0-1.8
- It's a binary! ~16.6 d period identified in both
 y-rays (Corbet+ 2011, Ackermann+ 2012) and
 X-rays (An+ 2013, 2015, Tanaka+ 2014)
- Optical counterpart identified: 30 M_☉ O6V((f)) star (Napoli+ 2011)
- One of only two high-mass **γ**-ray binaries inside an SNR (SS 433 in W50)

XMM image

Is it really a point source?

Chandra close-up

Yes, but: a slight excess of photons in white ellipse... matter ejected by the binary?!?

Binary evolution models

Constraints

- 30 M_{\odot} companion
- 16.6 d period
- Compact star

progenitor explodes first

Massive O-type star

Detached binary

- Assume solar metallicity
- No mass transfer
- Use single-star evolution code (Hurley+ 2002)
- Result: compact object = black hole, but...
- No way to reproduce 16.6 d period

Binary with mass transfer

- Use binary star evolution codes (Hurley+ 2002)
- Grid of 80,000 simulations
- $M_1 = 10-35 M_{\odot}, M_2 = 12-50$ $M_{\odot}, M_2 > M_1$
- P = 5 50 d, e = 0 0.9
- Best-fit reproduction with M_1 = 13.4 M₀, M_2 = 26.7 M₀, P = 18 d
- Results in 2.2 M_{\odot} NS

72 ks Chandra Obs. (ours) 105 ks XMM Obs. (PI: De Luca)

Selected two bright regions for analysis: North & West

North region spectrum

Model: phabs x vpshock

Abundances:

 $O \equiv |$ Ne = 1.19 Mg = 1.06 Si = 0.19 Fe = 0.24

Chandra, XMM MOS 2

West region spectrum

Chandra, XMM MOS I, XMM MOS 2

North

West

West region rich in Mg, spectra and abundances similar to N49B in LMC (Park et al. 2003), another SNR with Mg-rich ejecta

Nucleosynthesis models produce significant amounts of Mg in explosions of massive (> 25 M_☉) (Thielemann+ 1996)

- SNRs can reveal information about the progenitor system!
- IFGL J1018.6-5856 may have some extended emission a few arcseconds away... could be material from the binary?
- Binary evolution codes suggest a relatively tight binary where mass transfer must have taken place; SN progenitor $\approx 27 M_{\odot}$
- Models most consistent with a heavy neutron star as compact object
- Ejecta in SNR appear Mg-rich, very similar to LMC SNR N49B
- Nucleosynthesis models favor massive stars > 25 M_{\odot}