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We currently discover ~10,000 SNe annually
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LSST may discover 1 million SNe annually!
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The Needles & the Haystack

SNe we actively follow with
other resources

Several ~100k / Year
With spec. classification

~Million SNe / Year
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Can we classify SNe into their spectroscopic

subtypes, given a complete multiband light curve
and redshift?



e ~ 5200 SNe-like transients in PST Medium Deep Survey
(Jones+2017)

e ~ 3100 have host redshift measurements

e 518 SNe are spectroscopically classified with host
redshift measurements S
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We introduce a new analytical model to better fit all SNe subtypes
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Using posterior draws from an MCMC, we can understand the
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Classification is the first step!

Can we actually gain physical insight with only
optical light curves?



We model 58 SLSNe from the literature using a magnetar
model, use these fits to simulate the SLSNe population &

inject them into an LSST simulation (OpSim)
Simulated @ Nicholl (2017) = Lunnan (2018) ¢ De Cia (2018)
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Redshift distribution
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We uncover the “information content” by refitting
our simulated light curves using MOSFiT

~3,000 SLSNe / year with recoverable
parameters to within a factor of 2

~2,000 SLSNe / year with recoverable
parameters to within 30%
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A concluding point about those “needles”

e “Needles” will represent 1/10,000 outliers (given multiwavelength
observing/person-hour constraints)

e Anomaly detection (even with state-of-the-art machine learning) is
challenging, especially when SN LC properties overlap

e More likely than not, machine learning will not choose interesting objects
for us

e Instead, we can use our domain knowledge to construct simple,
physically-motivated cuts to search for the most “interesting” needles

e [I'dlove to chat more about this!



Conclusions & Thanks!

e LSST will increase transient discovery rate by several orders of magnitude,
leaving us to search for needles in a haystack of nightly objects

e In preparation, we train a classifier on the PS1-MDS SNe dataset, utilizing
a MCMC to generate simple LCs with extractable features

e We find our classifier performs as well as those trained for on la-vs-non la
classification, and those trained on synthetic datasets

e Using SLSNe as an example, we show that we can extract useful physical
information from LCs alone, allowing us to perform population studies
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