

Missing Red Supergiants and **Carbon Burning** by Tuguldur Sukhbold based on

Sukhbold & Adams 2019, submitted to MNRAS

ESO/L. Calçada

Ohio Supercomputer Center

Collaborators:

Stan Woosley Thomas Ertl Thomas Janka Alex Heger

(UC Santa Cruz) (Max Planck IA) (Max Planck IA) (Monash)

Which Massive Stars Explode?

 ${\sim}8 < M_{\rm ZAMS} < {\sim}30~[M_{\star}]~~{\rm at~solar}~Z$

Older picture, until ~ 2010

All stars explode as SN in ~8 < $M_{\rm ZAMS}$ < ~30 [M_{*}]

New evidence: Missing Red Supergiants

Theory:

1. do not die as luminous RSG:

(ignore explosion physics, edit stellar evolution)

e.g.,

Yoon & Cantiello (2010) Chieffi & Limongi (2013) Groh et al. (2013) Limongi & Chieffi (2018)

Theory:

1. do not die as luminous RSG:

(ignore explosion physics, edit stellar evolution)

- X light curves of Type I b/c SN
- X ratio of Red/Blue SGs
- \mathbf{X} mass distribution of BHs
- X direct imaging of implosion candidate

Theory:

1. do not die as luminous RSG:

(ignore explosion physics, edit stellar evolution)

2. luminous RSG don't explode:

(keep stellar evolution, include explosion physics)

e.g.,

O'Connor & Ott (2011) Ugliano et al. (2012) Sukhbold & Woosley (2014) Ertl et al. (2016) Sukhbold et al. (2016) Müller et al. (2016) Sukhbold et al. (2018)

Non-monotonic Final Core Structure

C-burning Transition: Convective vs Radiative

e.g., Barkat & Marom (1990) Weaver & Woosley (1993) Timmes et al. (1996)

energy generation rate: (C-burning) energy loss rate: (neutrinos)

To drive convection:

 $\epsilon_{\rm n}/\epsilon_{\nu} > 1$

Transition and Explodability

First Detection of Implosion

Constrain Massive Stellar Models?

Constrain Massive Stellar Models?

"Sometimes speculation advances science." Stan Woosley (in response to referee)

Possible Caveats

Observations:

RSG really missing?

bias due to circumstellar dust extinction?
Walmswell & Eldridge (2012) and Beasor & Davies (2016)

bias due to improper bolometric correction? Davies & Beasor (2018) probably a small effect Kochanek et al. (2012)

> maybe improper statistical analysis Kochanek 2019, in prep

Theory:

robust and reproduced?

– stellar evolution results with **KEPLER**:

MESA 🗸

e.g., FRANEC ? GENEC ? HONGO ?

explosion results with **P-HOTB**:

GR1D 🗸

Müller et al. (2016) 🗸

1D turbulence based models? e.g., Couch et al. 2019

Mabanta et al. 2019

(but see Mueller 2019)

To sum up:

fairly clear that luminous RSG stars ($M_{ZAMS} > 16-20$) do not result in SN

consistent with stellar evolution + calibrated v-driven explosion results

currently observed upper limit of exploding RSG could be the signature of central C-burning transition

