[Ten to the] Fifty-One Ergs (22 May 2019)

Confirmation of the D⁶ Type Ia supernova scenario with hypervelocity white dwarfs in *Gaia* DR2

Ken Shen (UC Berkeley) +Andrews, Chomiuk, Badenes, Miles, Townsley, et al. [Ten to the] Fifty-One Ergs (22 May 2019)

Do Dynamically Driven Double Degenerate Double Detonations Drive Dwarf Death? Definitely!

Ken Shen (UC Berkeley) +Andrews, Chomiuk, Badenes, Miles, Townsley, et al.

The landscape of SN la progenitor scenarios

Explosion mechanism Companion, Mass transfer	<i>M</i> _{Chandra} , core convection, deflagration-detonation	Sub- <i>M</i> _{Chandra} , He detonation, then C detonation
H-rich Stable Mdot	"Single degenerate" (Whelan & Iben 73)	
He-burning star Stable Mdot	"Single degenerate" (Yoon & Langer 03)	"Double detonation" (Taam 80; Nomoto 82; Woosley+ 86)
He WD Stable Mdot		"Double detonation" (Bildsten+ 07; Fink+ 07)
He WD Unstable Mdot		"Double detonation; D ⁶ " (Guillochon+ 10)
C/O WD Unstable Mdot	"Double degenerate" (Webbink 84; Iben & Tutukov 84)	"Double detonation; D ⁶ " (Dan+ 11; Pakmor+ 13)

 And others: tidal disruptions by BHs (Rosswog+ 09), WD+WD collisions (Raskin+ 10, Katz+ 12), violent merger / spiral instability (Pakmor+ 10, Kashyap+ 15)

Sub-M_{Chandra} double detonations

The landscape of SN la progenitor scenarios

Explosion mechanism Companion, Mass transfer	<i>M</i> _{Chandra} , core convection, deflagration-detonation	Sub- <i>M</i> _{Chandra} , He detonation, then C detonation
H-rich Stable Mdot	"Single degenerate" (Whelan & Iben 73)	
He-burning star Stable Mdot	"Single degenerate" (Yoon & Langer 03)	"Double detonation" (Taam 80; Nomoto 82; Woosley+ 86)
He WD Stable Mdot		"Double detonation" (Bildsten+ 07; Fink+ 07)
He WD Unstable Mdot		"Double detonation; D ⁶ " (Guillochon+ 10)
C/O WD Unstable Mdot	"Double degenerate" (Webbink 84; Iben & Tutukov 84)	"Double detonation; D ⁶ " (Dan+ 11; Pakmor+ 13)

 And others: tidal disruptions by BHs (Rosswog+ 09), WD+WD collisions (Raskin+ 10, Katz+ 12), violent merger / spiral instability (Pakmor+ 10, Kashyap+ 15)

Dynamically driven double degenerate double detonations (D⁶)

(Guillochon+ 10)

Multi-D + helium shell + large net in LTE (1.0 + 0.02 Msol)

- Reasonable spectra, but light curves evolve too rapidly:
 combination of multi-D + non-LTE + large network + helium shell?
- See Dean's poster (#24)! And Abi's and Fernando's posters (#18 and 14) for related work

Ken Shen (UC Berkeley)

Surviving WD donors from D⁶ SN Ia systems

- Ignition can happen before companion fully disrupted
 - Avoids excess asymmetry, polarization of complete merger
 - Companion WD might survive explosion

Hypervelocity runaway D⁶ survivors

- ~25 within 1 kpc, 300-400 within 2.5 kpc
- Gaia DR2 search: Shen +Andrews, Chomiuk, Badenes, Miles, Townsley, et al. 18

The fastest unbound stars in the Milky Way

- 1000 2500 km/s (~0.02e51 erg!), consistent with WD companion in WD+WD system
- Not ejected from Galactic center

Similar and unique CMD positions

• Not on the WD cooling track ... energy injection during / after unstable mass transfer?

Similar and unique spectra

- As expected: no H; strong C, O, Mg, Ca, and Fe!
- Have high-res spectra, but log(g), T_{eff}, abundances, etc. need UV spectra to break degeneracies

Similar and unique spectra

- As expected: no H; strong C, O, Mg, Ca, and Fe!
- Have high-res spectra, but log(g), T_{eff}, abundances, etc. need UV spectra to break degeneracies

And one comes from a SN remnant!

- Fesen et al. (2015): farthest off the plane \rightarrow SN Ia?
- Age matches travel time; distance also consistent
- The only D⁶ star with high-resolution H-alpha

Ken Shen (UC Berkeley)

Summary

- Sub-*M*_{Chandra} double detonation simulations reproduce overall observations
 - But some deviations from observations
 - Non-LTE + multi-D work may solve these issues (hopefully!)
 - See posters #14, 18, and 24
- For the first time, we have detected SN Ia surviving companions!
 - Three stars picked only for velocity: same part of CMD, very similar and unique spectra, with predicted compositions
 - And one comes from a likely SN Ia remnant with matching age and distance
 - Dynamically driven double degenerate double detonations do definitely drive dwarf death!
- Future work & remaining mysteries:
 - UV spectroscopic follow-up for abundances, atmospheric parameters, *M*, *R*
 - Modeling of the high-resolution spectra: do abundances match sub-Chandra yields?
 - Do the others have associated SN remnants?
 - What is the current structure of the D⁶ stars? Stellar evolution and explosion calculations, high-cadence photometry to look for pulsations
 - What is their future evolution? Where are the other 300-400? Are these just the three brightest ones? Do dynamically driven double degenerate double detonations dominate dwarf death?

Ken Shen (UC Berkeley)