Neutrino-matter interactions in neutron star merger simulations

Sanjana Curtis Sherwood Richers Carla Fröhlich

NC State University May 20, 2019

Why care about neutrinos in NS mergers?

- r-process nucleosynthesis, kilonovae
 (Kasen+19, Eichler+19, Martin+18, Barnes+16, Metzger+10)
- short gamma-ray burst mechanism

(Perego+17, Just+16, Zalamea+11, Richers+15, Eichler+89)

Can we get the neutrino physics right?

Different transport methods

Light bulb, leakage, FLD, M0, M1 VET, DO, MC

How reliable are the results of approximate methods?

Can we get the neutrino physics right?

Different transport methods

Light bulb, leakage, FLD, M0, M1 VET, DO, MC

How reliable are the results of approximate methods?

Different interactions Emission/absorption Scattering Oscillations

Which interactions are important to include?

The unreasonable effectiveness of Monte Carlo techniques

• Probabilistic solution, very accurate and very expensive. (Miller+19, Foucart+18, Richers+15, Abdikamalov+12, Keil+03, Yamada+99, Janka+91, Tubbs+78)

This study:

- MC neutrino transport on fluid snapshots from MO simulations and compare results.
- Investigate importance of various neutrino interactions over broad parameter space.

SedonuGR: Time-independent MC transport

- General-relativistic Monte Carlo neutrino transport code.
- Emit neutrino 'packets'. Propagate and scatter (with correct probability density functions!) till they escape or are absorbed.
- Neutrino-fluid interactions depend on (ρ , T, Ye, E_{ν} , S_{ν}). Tabulated rates from NuLib (nulib.org), given an EOS and set of interactions.

Fluid Snapshots

Post-merger snapshots

4 EOSs

Equal and unequal mass binaries

(Radice et al. 2018)

Questions:

1. How do results from dynamical M0 compare to MC?

2. Importance of:(i) neutrino-electron inelastic scattering(ii) neutrino pair-annihilation?

M0 and MC: heating and cooling rates

Questions:

1. How do results from dynamical M0 compare to MC?

2. Importance of:(i) neutrino-electron inelastic scattering(ii) neutrino pair-annihilation?

$$\kappa_s(\omega) = \frac{1}{h^3 c^4} \int d\left(\frac{\omega'^3}{3}\right) \int d\Omega' R(\omega, \omega', \mu)$$
$$R(\omega, \omega', \mu) \approx \frac{1}{2} \Phi_0(\omega, \omega') + \frac{3}{2} \mu \Phi_1(\omega, \omega')$$

- 1. Pick random new energy (inelastic)
- 2. Pick random new direction (anisotropic)

3. Heavy flavors (Preliminary) Number of escaping neutrinos $[s_{-1}^{-1}]_{10_{23}}$ 10_{23} 10_{23} 10_{21} ν_x , base ν_x , inelastic 10^{0} 10^{2} 10^{1} Energy [MeV]

Questions:

1. How do results from dynamical M0 compare to MC?

2. Importance of:(i) neutrino-electron inelastic scattering(ii) neutrino pair-annihilation?

Estimating the energy deposited via neutrino pair-annihilation

$$\mathcal{F}_{\text{annihil}}^{\mu} = \int \widetilde{dp}_{(1)} \int \widetilde{dp}_{(2)} \int d\Omega_{(1)} \int d\Omega_{(2)} f_{(1)} f_{(2)} \left(p_{(1)}^{\mu} + p_{(2)}^{\mu} \right) \Phi(\cos\theta)$$

1. Reconstruct distribution function from moments

- 2. First two moments of annihilation kernel, guess third
- 3. Calculate annihilation rate for all species in a given cell
- 4. Multiply by four-volume of the cell to get energy deposited

Can pair-annihilation power sGRB jet?

1. BH case: SFHo, M=1.35, 1.35, t~25.9ms E(annihilation) = 1.14×10^{48} erg/s (**Preliminary**)

(Just+16, Zalamea+11, Birkl+07, Kneller+06)

Can pair-annihilation power sGRB jet?

2. HMNS case: DD2, M=1.35, 1.35, t~27.5ms E(annihilation) = 1.16×10^{50} erg/s (Preliminary)

(Perego+17, Richers+15, Dessart+09)

Takeaways (and an invitation!)

- MC transport is well-suited for exploring neutrino-matter interactions in NS mergers.
- So far, we have looked at:
 - 1. MC-M0 comparison: order of magnitude consistent
 - 2. Neutrino-electron inelastic scattering: heavy flavors most affected
 - 3. Neutrino pair-annihilation: HMNS case needs further exploration
- In progress: unequal mass binaries, neutrino blocking effects

Suggestions?

🔀 ssanjan@ncsu.edu 🎔 @sanjanacurtis

Thank You