Binary neutron star mergers: connecting strong field dynamics with multimessenger observations

Albino Perego

Trento University & INFN Milano-Bicocca

20 May 2019 FOE 2019 Conference, Raleigh (NCSU)

GW170817: first MM detection from a BNS merger

GWs from an event compatible with BNS merger reported by LVC

LVC PRL 119 2017

▶ ~1.7 seconds after, γ -ray signal compatible with short GRB

LVC, Fermi, Integral ApJ 848 L13 2017

▶ 11 hrs after, kilonova emission from NGC 4993 (40 Mpc): AT2017gfo

e.g., LVC+ many other astronomy and astroparticle collaborations ApJ 848 L2 2017

GW170817: first MM detection from a BNS merger

GWs from an event compatible with BNS merger reported by LVC

LVC PRL 119 2017

▶ ~1.7 seconds after, γ -ray signal compatible with short GRB

LVC, Fermi, Integral ApJ 848 L13 2017

▶ 11 hrs after, kilonova emission from NGC 4993 (40 Mpc): AT2017gfo

e.g., LVC+ many other astronomy and astroparticle collaborations ApJ 848 L2 2017

GW170817: first MM detection from a BNS merger

GWs from an event compatible with BNS merger reported by LVC LVC PRL 119 2017

• ~1.7 seconds after, γ -ray signal compatible with short GRB

LVC, Fermi, Integral ApJ 848 L13 2017

▶ 11 hrs after, kilonova emission from NGC 4993 (40 Mpc): AT2017gfo

e.g., LVC+ many other astronomy and astroparticle collaborations ApJ 848 L2 2017

Challenges in BNS merger modelling

relevance:

- BNS mergers as cosmic laboratory for fundamental physics
- prototype of MM astrophysics sources
- challenge: quantitative statements require sophisticated numerical models

multi-physics

- ► GR
- strong nuclear interaction
- weak nuclear interactions
- magnetic fields & EM interactions

multi-scale

- strong field dynamics
 - small-size (100 km)
 - short timescale (1 ms 1 s)
- EM counterpart emission
 - large-scale $(10^6 \text{ km} 10^{12} \text{ km})$
 - ▶ long timescale (1 s − 10 days)

different scales and different interactions are intimately related

BNS merger in a nutshell

Credit: D. Radice; see Rosswog IJMP 2015 for a recent review

- Massive NS (\rightarrow BH) $\rho \gtrsim 10^{12} \text{g cm}^{-3}$, $T \sim$ a few 10 MeV
- thick accretion disk $M \sim 10^{-2} - 0.2M_{\odot}$, Y_e $\lesssim 0.20$ $T \sim$ a few MeV
- intense ν emission $L_{\nu,\text{tot}} \sim 10^{53} \text{erg s}^{-1}, E_{\nu} \gtrsim 10 \text{ MeV}$

$$\left(Y_e = n_e/n_B \approx n_p/\left(n_p + n_n\right)\right)$$

FOE 2019, Raleigh, 2019/05/20

BNS mergers on thermodynamics diagrams

Which are the thermodynamics conditions of matter during the merger?

Perego, Bernuzzi, Radice 2019 arXiv:1903.07898

- set of BNS merger simulations in NR: different NS masses and microphysical EOSs (DD2, LS220, SFHo)
- ν -physics: leakage scheme (optically thick) + M0 transport (opt. thin)
- possibly, turbulent viscosity (GRLES)

at each time, mass weighted histograms in the $\rho\text{-}T\text{-}Y_{\rm e}$ or $\rho\text{-}s\text{-}Y_{\rm e}$

WhiskyTHC NR code

Radice+ 12,14,15

$$M_1 = M_2 = 1.364 \, M_{\odot}$$

DD2 EOS

movies at www.youtube.com/channel/ UChmn-JGNa9mfY5H5938jnig

BNS mergers on thermodynamics diagrams II

Perego,Bernuzzi,Radice 2019 arXiv:1903.07898 8 / 37

BNS mergers on thermodynamics diagrams III

Albino Perego

FOE 2019, Raleigh, 2019/05/20

Perego,Bernuzzi,Radice 2019 arXiv:1903.07898 9 / 37

Thermodynamics diagrams: soft VS stiff EOS

DD2 (stiff), $M_1 = M_2 = 1.364 M_{\odot}$

SFHo (soft), $M_1 = M_2 = 1.35 M_{\odot}$

Thermodynamics diagrams: soft VS stiff EOS

Albino Perego

FOE 2019, Raleigh, 2019/05/20

Disk properties: BH vs MNS remnant

Disk harboring a MNS are ...

- …less compact
- ... less entropic ($\Delta s \approx 2 k_{\rm B}$)
- ...more neutron rich

Disk harboring a BH are ...

- ...more compact
- ... more entropic ($\Delta s \approx 2 k_{\rm B}$)
- …less neutron rich

Disk properties: BH vs MNS remnant

Disk harboring a MNS are ...

- …less compact
- ... less entropic ($\Delta s \approx 2 k_{\rm B}$)
- ...more neutron rich

Disk harboring a BH are ...

- ...more compact
- ... more entropic ($\Delta s \approx 2 k_{\rm B}$)
- …less neutron rich

Disk properties: BH vs MNS remnant

Disk harboring a MNS are ...

- ...less compact
- ... less entropic ($\Delta s \approx 2 k_{\rm B}$)
- ... more neutron rich

Disk harboring a BH are ...

- ...more compact
- ... more entropic ($\Delta s \approx 2 k_{\rm B}$)
- ...less neutron rich

BNS merger in a nutshell (II)

Credit: D. Radice

ejection of *n*-rich matter

- a few % of M_{tot}
- different ejection mechanisms
- *r*-process nucleosynthesis

$$E_{\mathrm{kin}} \approx 1.35 \times 10^{51} \mathrm{erg} \left(\frac{M_{\mathrm{ej}}}{0.05 M_{\odot}} \right) \left(\frac{v_{\mathrm{ej}}}{0.1 c} \right)^2$$

e.g. Lattimer & Schramm ApjL 73, for a recent review: Thielemann+ ARAA 17

Rosswog 2015 Albino Perego

FOE 2019, Raleigh, 2019/05/20

r-process nucleosynthesis: yields

at low entropy ($s \lesssim 30k_b$ /baryon), Y_e dominant parameter

e.g., Hoffman+ ApJ 98

- $Y_e > 0.5$: no *r*-process
- ▶ $0.25 \leq Y_e < 0.5$: weak *r*-process
- $Y_e \lesssim 0.25$: strong *r*-process

10 olar Abundances 10-3 $Y_e \gtrsim 0.25 \ Y_e \approx 0.15 - 0.25 \ Y_e \lesssim 0.15$ Abundance 10-Actinides Lanthanides 10-7 10-8 60 80 100 120 140 160 180 200 220 240 Mass Number

Production of lanthanides dramatically changes photon opacity

- no lanthanides: low opacity $(\kappa_{\gamma} \lesssim 1 \text{ cm}^2/\text{g})$
- presence of lanthanides: increased opacity $(\kappa_{\gamma} \gtrsim 10 \text{ cm}^2/\text{g})$

 κ_{γ} : effective gray opacity

Courtesy of G. Martinez-Pinedo

Kilonova (aka Macronova) emission

e.g., Li & Paczenski 98, Rosswog+ 05, Metzger+ 10, see Fernandez &

Metzger 2016, Metzger LRR 2017 for recent reviews

- radioactive decay of freshly sinthetized *r*-process elements in ejecta: release of nuclear energy
- photon thermalization & diffusion
- emission of photons at photosphere
- non-trivial, energy-dependent photon-matter interaction in atmosphere

What does influence kilonova emission? In other words, how different can kilonovae be?

Dynamical ejecta from BNS merger

*t*_{ej,dyn} ~ few ms *v*_{ej,dyn} ~ 0.2 − 0.3 *c M*_{ej,dyn} ~ 10⁻⁴ − 10⁻²*M*_☉, depending on *q* and EOS

tidal component

 first to develop
 equatorial
 cooler (lower entropy)

 shocked component

 due to (H)MNS bounces
 equatorial & polar
 higher entropy

Dynamical ejecta from BNS merger

*t*_{ej,dyn} ~ few ms
 *v*_{ej,dyn} ~ 0.2 − 0.3 *c M*_{ei,dyn} ~ 10⁻⁴ − 10⁻²*M*_☉, depending on *q* and EOS

e.g., Korobkin+12, Hotokezaka+13, Bauswein+13, Wanajo+14, Sekiguchi+15, Radice+16, Bovard+17

Radice, Perego, Hotokezaka et al ApJ 2018

tidal component

- first to develop
- equatorial
- cooler (lower entropy)
- shocked component
 - due to (H)MNS bounces
 - equatorial & polar
 - higher entropy

Impact of ν absorption on dynamical ejecta

- In the past, ν-matter interactions assumed to be negligile:
 - ejecta had always and everywhere Y_e < 0.1</p>
 - robust r-process
- however, v-matter interactions increase Y_e at polar latitudes
 - most relevant reaction: $n + \nu_e \rightarrow p + e^-$
 - possible angular dependence in r-process nucleosynthesis

w/o neutrino absorption

Perego, Radice, Bernuzzi ApJL 17; Radice, Perego, Hotokezaka et al ApJ 2018

see also e.g. Wanajo+ ApJL 2014' Sekiguchi+ PRD 2015; Martin, Perego, Kastaun & Arcones CQG 2018, Ardevol-Pulpillo et al 2019

FOE 2019, Raleigh, 2019/05/20

Baryonic winds from BNS merger

- due to secular and thermal evolution of the remnant and of the disk
- ▶ $t_{\rm ej,wind}$ ~few 10's-100's ms and $v_{\rm ej,wind} \lesssim 0.1 c$
- $M_{\rm ej,wind}$ up to a few 0.01 M_{\odot}

several works for BH+disk systems

- neutrino absorption
- turbulent angular momentum transport
- nuclear recombination

e.g. Metzger&Fernandez 13 MNRAS, Just+15 MNRAS,

Fernandez+17, CQG, Siegel+ 2018, Fernandez+ 19

several works for BNS remnants e.g. Fernandez&Metzger 14 MNRAS, Perego+14 MNRAS, Martin+15 ApJ,

Lippuner+16 MNRAS, Fujibayashi+17,18 ApJ, Shibata+17 PRD, Radice+18 ApJ, Perego+18 JPhg, Fahlman & Fernandez 18 ...

Baryonic winds from BNS merger

- due to secular and thermal evolution of the remnant and of the disk
- ► $t_{\rm ej,wind}$ ~few 10's-100's ms and $v_{\rm ej,wind} \lesssim 0.1 c$
- $M_{\rm ej,wind}$ up to a few 0.01 M_{\odot}

Fujibayashi+18, ApJ

Perego+14, MNRAS

Ejecta properties and kilonovae

electron fraction

- **b** polar regions: $Y_e \gtrsim 0.25$
- equatorial regions: $Y_e < 0.25$
- nucleosynthesis
 - polar regions
 - I *r*-process peak
 κ_γ ≤ 1cm²g⁻¹
 - equatorial regions
 - II-III *r*-process peaks $\kappa_{\gamma} \gtrsim 10 \text{cm}^2 \text{g}^{-1}$

EM counterparts kilonova: early blue + later red

Nucleosynthesis from dynamical ejecta & wind

Perego, Rosswog, Cabezon et al MNRAS 2014; Martin, Perego,

Arcones et al ApJ 15

Ejecta properties and kilonovae

electron fraction

- **b** polar regions: $Y_e \gtrsim 0.25$
- equatorial regions: Y_e < 0.25</p>
- nucleosynthesis
 - polar regions
 - I *r*-process peak $\kappa_{\gamma} \lesssim 1 \text{cm}^2 \text{g}^{-1}$
 - equatorial regions
 - II-III *r*-process peaks $\kappa_{\gamma} \gtrsim 10 \text{cm}^2 \text{g}^{-1}$
- EM counterparts kilonova: early blue + later red

Broadband light curves from wind only (left)

and from wind+dynamical ejecta (right)

Perego, Rosswog, Cabezon et al MNRAS 2014; Martin, Perego,

Arcones et al ApJ 15

Disk masses and baryonic winds

independent works suggest that

 $M_{
m ej,wind} = \xi M_{
m disk}$ with $0.1 \lesssim \xi \lesssim 0.4$

Tidal deformation during the inspiral phase

NS in external, inhomegeneous gravitational field \Rightarrow tidal deformation

$$Q_{i,j} = -\lambda \mathcal{E}_{i,j}$$
$$\lambda = \left(\frac{2}{3} \frac{R^5}{G} k_2\right)$$

- *Q_{i,j}* quadrupolar moment
- $\blacktriangleright \mathcal{E}_{i,j} = \partial_{i,j}^2 \Phi \quad \text{tidal field}$
- *k*² quadrupolar tidal polarizability
- R radius of the star
- tidal deformation enhances GW emission
- ► $\geq 5^{th}$ PN order correction to point particle dynamics
- leading term $\propto \tilde{\Lambda}(M_A, M_B, \text{EOS})$

$$\tilde{\Lambda} = \frac{16}{13} \left[\frac{(M_A + 12M_B)M_A^4 \Lambda_2^{(A)}}{(M_A + M_B)^5} + (A \leftrightarrow B) \right]; \ \Lambda_2^{(i)} = \left(\frac{c^2}{M_i} \right)^5 \lambda_{(i)}; \quad i = A, B$$

see, e.g., Damour, Les Houches Summer School on Gravitational Radiation 1982; Flanagan & Hinderer PRD 77 2008, Bernuzzi et al PRD 2012 Albino Perego FOE 2019, Raleigh, 2019/05/20 26 / 37

Multi-Component Anisotropic Kilonova Model

- simplified model that includes our present knowledge about ejecta
- ▶ different ejection channels → multi-component
- explicit dependency on polar angle \rightarrow anisotropic
 - explicit dependence on observer viewing angle

Perego, Radice, Bernuzzi 17, ApjL

- $\blacktriangleright M_{\rm ej}(\theta), v_{\rm ej}(\theta), \kappa_{\rm ej}(\theta)$
- 1D models along each ray
- homologous mass expansion
- time scale argument for γ-diffusion
- black-body emission at photosphere Grossman+14 MNRAS; Martin+15

ApJ

Representative kilonova emission

- light curves in relevant photometric bands (UV, Optical, NIR) for a broad set of BNS
- dynamical ejecta directly extracted from simulations
- wind and viscous ejecta: fraction of the disk mass (0.03 and 0.20, respectively) with properties obtained from AT2017gfo best-fit model

Radice, Perego, Hotokezaka et al 2018 ApJ

Systematics of kilonova peaks

Peak time, magnitude and time width ($\Delta M = 1 \text{ mag}$) VS $\tilde{\Lambda}$

Radice, Perego, Hotokezaka et al 2018 ApJ

Super-Keplerian Long-Lived Remnant

Albino Perego

Possible Signatures of long-lived Remnant

bright visible and IR peak: possible signature of stable MNS

Radice, Perego, Bernuzzi, Zhang 2018 MNRAS

Conclusions

- ▶ BNS modelling: fundamental to make the most of MM astrophysics
- BNS merger as sites where matter reaches most extreme density and temperature conditions
- relevance of weak interaction, especially for ejecta properties and nucleosynthesis
- kilonovae: possibly large intrinsic variability and $\tilde{\Lambda}$ -correlation

FOE 2019, Raleigh, 2019/05/20

INFN Post-Job position at ECT*

- INFN post-doc position at the European Center for Theoretical Studies in Nuclear Physics and Related Areas (ECT*)
- topic: Multimessenger Physics of Neutron Star Mergers
- duration: 2(+1) years
- ▶ position advertised in ~ weeks
- start: \geq fall 2019
- where: (beautiful) Trento
- infos: albino.perego@unitn.it or Prof. Wambach: jwambach@ectstar.eu

ECT*

EUROPEAN CENTRE FOR THEORETICAL STUDIES IN NUCLEAR PHYSICS AND RELATED AREAS

INFN Post-Job position at ECT*

- INFN post-doc position at the European Center for Theoretical Studies in Nuclear Physics and Related Areas (ECT*)
- topic: Multimessenger Physics of Neutron Star Mergers
- duration: 2(+1) years
- ▶ position advertised in ~ weeks
- start: \geq fall 2019
- where: (beautiful) Trento
- infos: albino.perego@unitn.it or Prof. Wambach: jwambach@ectstar.eu

Observables from BNS: GW waveforms

CORE collaboration: catalogue of 367 merger simulations in NR from 164 BNS configurations

www.computational-relativity.org

- largest waveform catalogue
- inclusion in NR-calibrated EOB models
- (long) hybrid GW waveforms models & GW analysis pipelines

FOE 2019, Raleigh, 2019/05/20

Influence of trapped neutrinos

- BNS simulations did not include trapped neutrinos
- ▶ post processing analysis: $Y_e \rightarrow Y_l = Y_e + Y_\nu$ $e \rightarrow u = e + e_\nu$

$$\begin{split} Y_l &= Y_{e,\mathrm{eq}} + Y_{\nu_e}(Y_{e,\mathrm{eq}}, T_{\mathrm{eq}}) - Y_{\bar{\nu}_e}(Y_{e,\mathrm{eq}}, T_{\mathrm{eq}}) \\ u &= e(Y_{e,\mathrm{eq}}, T_{\mathrm{eq}}) + \frac{\rho}{m_\mathrm{b}} \left[Z_{\nu_e}(Y_{e,\mathrm{eq}}, T_{\mathrm{eq}}) + \right. \\ &+ Z_{\bar{\nu}_e}(Y_{e,\mathrm{eq}}, T_{\mathrm{eq}}) + 4Z_{\nu_x}(T_{\mathrm{eq}}) \right] \\ 0 &= \eta_{\nu_e}(Y_{e,\mathrm{eq}}, T_{\mathrm{eq}}) - \eta_e(Y_{e,\mathrm{eq}}, T_{\mathrm{eq}}) + \\ &- \eta_\mathrm{p}(Y_{e,\mathrm{eq}}, T_{\mathrm{eq}}) + \eta_\mathrm{n}(Y_{e,\mathrm{eq}}, T_{\mathrm{eq}}). \end{split}$$

baryon degeneracy favors ν
_e over ν_e, but overall small effect
 δT/T ≤ 8%, δP/P ≤ 5%

Application to AT2017gfo: model calibration

 multi-components (2 or 3) models reproduce major observed features of AT2017gfo

- ▶ fast ($v \sim 0.3c$), low opacity ($\kappa \sim 1 \, \text{cm}^2 \text{g}^{-1}$) material essential
- global properties for AT2017gfo
 - anisotropic and multicomponent ejecta
 - $M_{
 m ej,tot} \sim 0.05 M_{\odot}, \, heta_{
 m obs} pprox 30^{o}, \, M_{
 m disk} \sim 0.1 M_{\odot}$
 - Iow-opacity material at high latitude: neutrinos @ work

on multi-component kilonova nature and on relevance of multi-D see e.g. Villar+17, Shibata+17, Kasen+17,

Smartt+17, Tanvir+17, Pian, D'Avanzo+ 17, Tanaka+17 etc.