Effects of the envelope structure of cool supergiant progenitors on the early-time light curves of Type IIb supernovae

Seong Hyun PARK, Sung-Chul YOON Department of Physics and Astronomy, Seoul National University

Abstract

Progenitors of some Type IIb supernovae (SNe IIb) like SN 1993J and SN 2013df have been identified as cool supergiants in the pre-SN images. Their light curves and spectra bear evidence that their progenitors have a relatively low-mass hydrogen-rich envelope. This implies that the progenitors undergo strong mass-loss via stellar winds and/or binary interactions during their pre-supernova evolution. There exist many theoretical studies on the SNe IIb light curves and spectra, but the effect of the hydrogen-rich envelope structure on SNe IIb has not been fully explored yet. We systematically investigate how the early-time light curves of SNe IIb are affected by the density profiles of the hydrogen-rich envelope of cool supergiant progenitors, using the radiation-hydrodynamics code STELLA. We find that with a steeper density profile of the hydrogen-rich envelope, the post-breakout emission in the optical reaches its peak earlier, and thereafter its luminosity declines more rapidly. However, with a flat density profile, which is predicted by recent SN IIb progenitor models where the effect of envelope inflation due to the iron opacity bump is taken into account, the post-breakout emission declines too slowly after its peak, compared to observations. This indicates that the early-time light curves of SNe IIb of SN1993J and SN 2013df are not compatible with the most recent predictions of stellar evolution models.

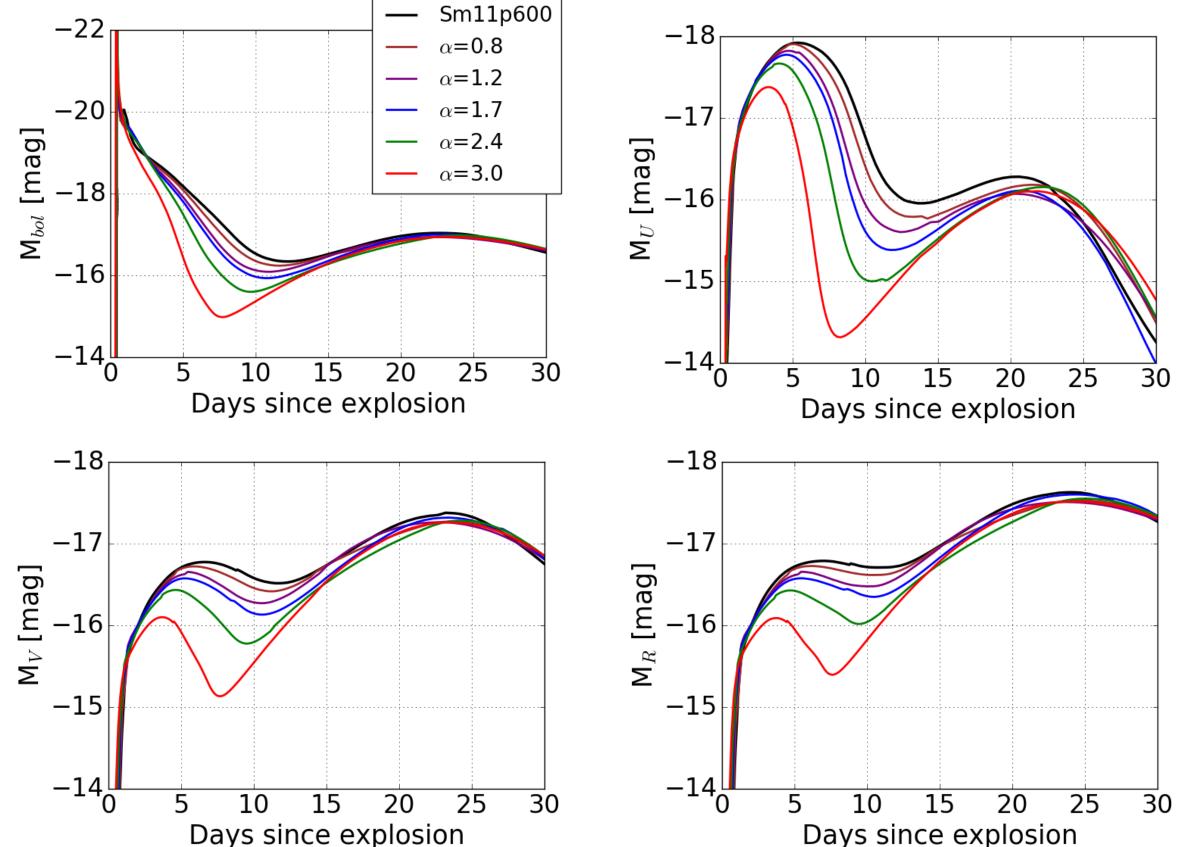
Introduction

- Type IIb Supernovae are characterized by the disappearance of hydrogen lines in late-time, indicating a significant stripping of the hydrogen envelope from the progenitors. Stellar wind and binary interactions can create such mass loss.

- In pre-SN images, the progenitors of SN1993J and SN2013df have been identified as cool supergiants(RSG, YSG) of which the radii exceed $200R_{\odot}$. (Aldering et al. 1994; Van Dyk et al. 2014)

- The effect of the density profile of the hydrogen-rich envelope of cool supergiant progenitors on the early-time light curves has not been studied in detail. We numerically simulate various models with different density structures of the hydrogen-rich envelope and compare their earlytime light curves with SN1993J, a typical SN IIb.

Progenitor Model & SN Simulation


1) Progenitor Model

- Sm11p600 : A RSG progenitor from binary system, calculated with the stellar evolution code MESA. (Yoon et al. 2017)

- Binary System Properties

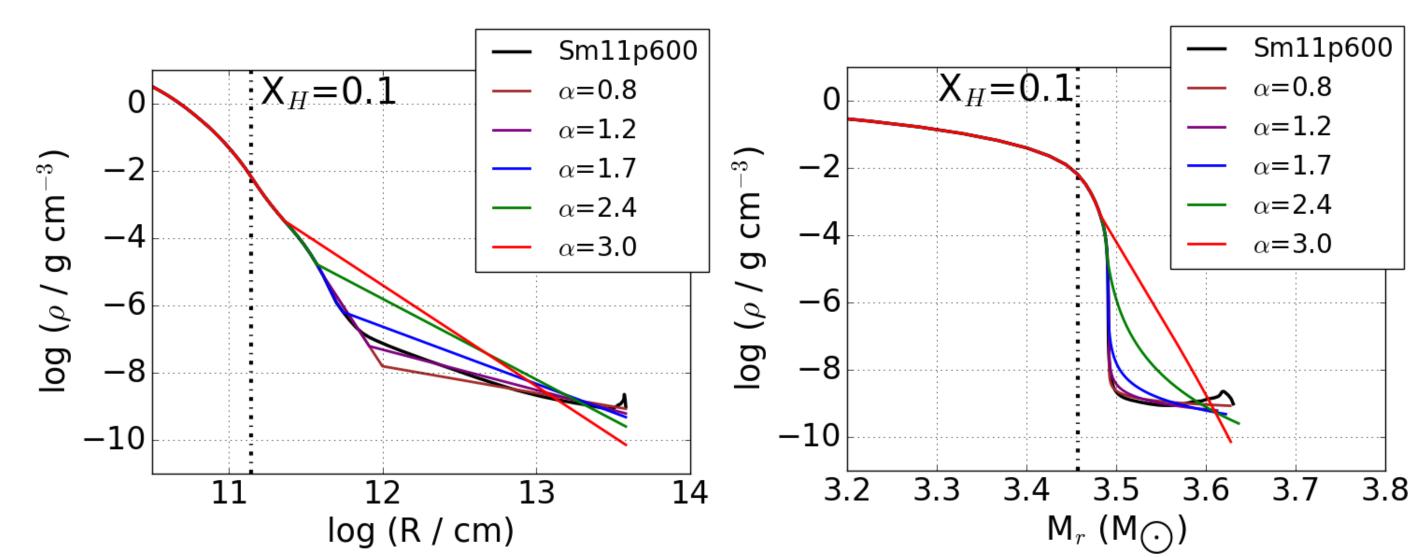
- The results show that the progenitor models with a steeper density profile in their hydrogen-rich envelopes result in a more rapid decline of the post-breakout emission, while the first peak happens earlier and becomes less luminous.

Results

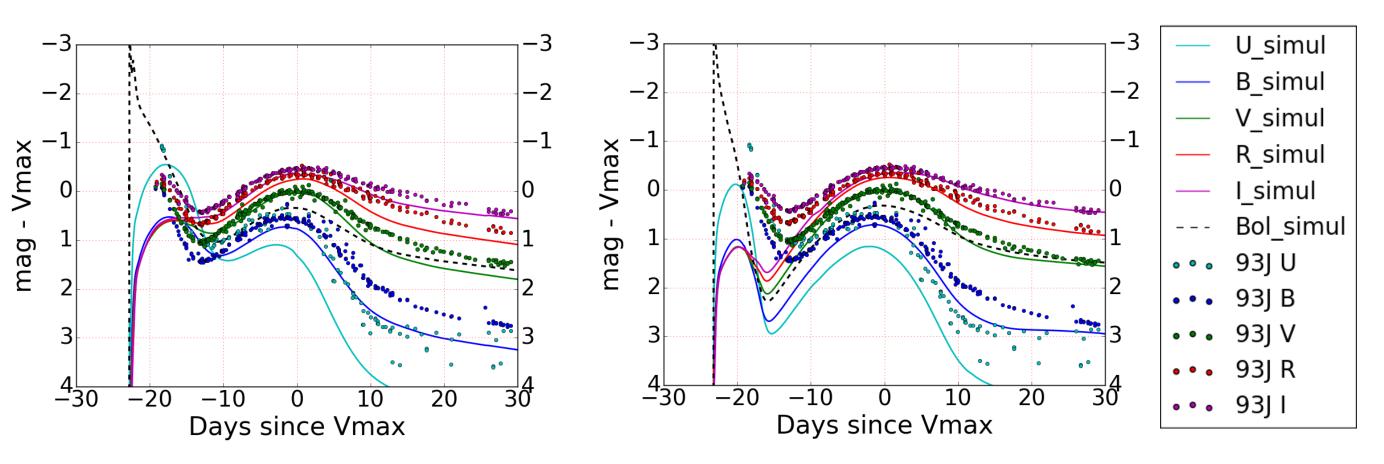
- Initial binary period : 600 days

- Binary mass ratio: 0.9
- Initial primary star mass: $11M_{\odot}$ - Metallicity: Solar metallicity
- -⁵⁶Ni mass & distribution
- Mass: $0.073 M_{\odot}$ (adopted by Blinnikov et al. (1998))
- Distribution: $X_{Ni}(M_r) = A \exp\left(-\left[\frac{M_r M_{Fe}}{f_m(M_{tot} M_{Fe})}\right]^2\right), f_m = 0.3$

2) Density Profile Modification


- Modified the envelope density structure while not altering the original progenitor model's total mass, radius, and chemical composition.

- In modified models, the density profile of the outmost H envelope follows a power-law. ($\rho \propto R^{-\alpha}$, envelope index $\alpha = 0.8$, 1.2, 1.7, 2.4, 3.0) 3) Numerical Simulation


- We used the radiation-hydrodynamics code STELLA for this work. (Blinnikov&Bartunov 2011)

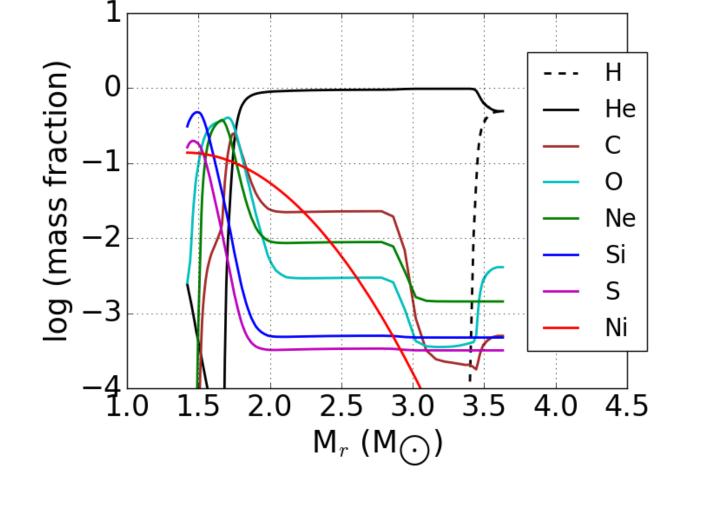
- All models were exploded with an explosion energy $E = 1.0 \times 10^{51}$

Fig 2. Light curves from SN simulations in absolute magnitude scale (Upper left) Bolometric (Upper right) U-band (Lower left) V-band (Lower right) R-band

Fig 3. Simulated light curves from selected models compared with SN1993J observation data. Magnitude scaled to the V maximum and time scaled to the V maximum date. (Data retrieved from Open Supernova Catalog; Guillochon et al. 2017) Left panel: Result from the original Sm11p600 progenitor model Right panel: Result with the envelope index α =3.0

Conclusion

- Our results show that a flatter density profile of the hydrogen-rich envelope in a SN IIb progenitor results in a too slow decline of the postbreakout emission in the optical compared to the observation.


- SN light curves from the most recent cool supergiant SNe IIb progenitor models show disagreement with the early-time observation, implying SN IIb progenitors could undergo a more complicated evolutionary process than the prediction of the recent stellar evolution theory. (e.g., a stronger mass loss during the pre-SN stages)

Acknowledgement

This work has been carried out in collaboration with Sergei Blinnikov.

References

[1] Yoon, S.-C., Dessart, L., & Clocchiatti, A. 2017, ApJ, 840, 10
[2] Aldering, G., Humphreys, R. M., & Richmond, M. 1994, ApJ, 107, 662
[3] Van Dyk, S. D., Zheng, W., Fox, O. D., et al. 2014, ApJ, 147,37
[4] Blinnikov, S., Eastman, R., Bartunov, O. S., Popolitov, V. A., & Woosley, S. E. 1998, ApJ, 496, 454
[5] Guillochon, J., Parrent, J., Kelley, L. Z., & Margutti, R. 2017, ApJ, 835, 10
[6] Blinnikov, S., Bartuniv, O. 2011, ascl:1108.013

Fig 1. Density profile of the input models as a function of radius (upper left) and mass-coordinate (upper right), and the corresponding chemical composition (lower left)