Emmanouela Paraskeva

PhD student National Observatory of Athens & University of Athens, Greece Supervisor: Dr. Alceste Bonanos

HELLENIC REPUBLIC National and Kapodistrian University of Athens

Early high-cadence observations of SNe: revealing features of variability and identifying their diversity

Outline

MOTIVATION

FUTURE PROSPECTS RESULTS

Motivation - SN 2014J

15-18 days after peak 2 min cadence

Evidence for rapid variability of 0.02-0.05 mag on a timescale of 15-60 min peaking on 3rd night

<u>Scenarios for the origin of micro-variability:</u> ⇒clumping of the ejecta (Hole et al. 2010)

- interaction of the ejecta with circumstellar material (Foley et al. 2014)
- ➡ asymmetry of the ejecta (Wang & Wheeler 2008)
- ⇒the onset of the secondary maximum (Pinto & Eastman 2000)

Bonanos & Boumis (2016)

Blue excess during the first 5 days of observations

- Good fit between UBVgri data and models of binary companion shocking from Kasen (2010)
- Fit overpredicts UV luminosity at early times

Scenarios for the origin of the bump:

- Interaction with CSM
- The presence of radioactive Nickel in the outer ejecta
- ➡Connection between an early light curve bump and unburned carbon-clue about SNe Ia progenitors?

Motivation - SN 2017cbv

Hosseinzadeh et al. (2017)

High-cadence survey

Obtain high-cadence observations to search for variability and characterise early evolution, with the goal of identifying SN progenitor channels.

2.3 m telescope RISE2 camera (10'x10' FOV, broad-VR filter) High cadence (10-180s) photometry

◎ 1.2 m telescope

- Two fast frame
- sCMOS Zyla 5.5
- cameras, 17'x14' FOV
- Dichroic beam
- splitter
- R & I filters

Observations

Late time photometry

	Object	RA	DEC	Туре	Discovery Date	Discovery mag	Filter	Number of frames	Telescope
\star	SN 2016gsn	02:29:17.482	+18:05:16.33	Ia	2016-09-29 11:02:24	16.3	VR	4520	Aristarchos
	SN 2016gsb	06:04:28.140	-20:20:24.94	Ia	2016-09-29 06:43:12	15.9	VR	1892	Aristarchos
	AT 2018gpn	03:37:45.260	+72:31:58.70	_	2018-08-22 13:42:14	15.9	VR	4201	Kryoneri
	SN 2018bq	11:05:59.588	-12:31:37.93	Ia	2018-01-08 08:52:48	16.1	V	58	pt5m
\star	SN 2018gv	08:05:34.61	-11:26:16.30	Ia	2018-01-15 16:21:06	16.5	R/I	236/236	Kryoneri
	SN 2018zd	06:18:03.18	+78:22:00.90	II	2018-03-02 11:40:16	17.8	R/I	323/323	Kryoneri
\star	SN 2018hgc	00:42:04.56	-02:37:40.80	Ia	2018-10-10 00:57:36	17.9	VR	284	Aristarchos
	SN 2018hhn	22:52:32.06	+11:40:26.70	Ia	2018-10-13 20:48:28	17.1	VR	296	Aristarchos
	SN 2018hna	12:26:12.05	+58:18:51.10	II	2018-10-22 19:33:07	16.3	VR	272	Aristarchos
									· · · ·
/								Paraskeva	a et al. (in prep

Methods

Photometry:

- PSF photometry with DAOPHOT
- ISIS Image Subtraction (Alard 2000)

Analysis:

- analysis following Winn et al. (2007)

<u>SNe light curve analysis:</u>

Photometric light curve data fitting to calculate the redshift and the time-of-zero-phase with SALT2, Nugent's templates, sncosmo

Optimal aperture photometry with VAPHOT (Deeg et al. 2013)

Trend-Filtering Algorithm (TFA, Kovacs et al. 2005) from VARTOOLS Remove seeing effects following Irwin et al. (2006) Estimation of white noise & and correlated noise (red noise) with a MCMC

observations with 2.3-m Aristarchos telescope, using an exposure time of **10s**. The rms improved from 0.072 mag to 0.016 mag.

Paraskeva et al. (in prep)

Yang et al. (2019)

100

 $\sigma_{\rm r}$

- 1.0

+ 0.0

 σ_{w}

0.0038

◇★ U/u

/ b

 $\bullet \star V/v + 3.0$

rp + 4.0

ip + 5.0

Early time photometry of SN 2018hgc: 180 frames obtained on the 2nd night of observations with 2.3-m Aristarchos telescope, using an exposure time of 90s.

Results - SN 2018hgc

Object rms_{tfa} $\sigma_{\rm r}$ a_{SNtfa} $\sigma_{\rm w}$ SN 2018hgc 0.01 0.286 0.0041

➡Residual undulations ~0.04 mag

Paraskeva et al. (in prep)

Fausnaugh et al. 2019

High cadence and high precision monitoring campaigns of future nearby and bright SNe in the ultraviolet and blue

2.3 m Aristarchos telescope 1.2 m Kryoneri telescope

- Radius of the explosion object (Nugent 2011, Garnavich et al. 2016)
- Constraints on the companion star (Kasen 2010, Fausnaugh et al. 2019)
- Explosion time (critical for color evolution, photospheric velocity) evolution and light curve slope)

Future prospects

15

Garnavich et al. 2016

Conclusions

- probing supernova physics
- early time light curves.
- seem significant when compared to red/white noise estimations.

We present results of a pilot study of high cadence photometry, which is a powerful tool for

Trend Filtering algorithm was key to subtracting the systematic noise. A future goal will be to improve the systematic error subtraction in order to confidently identify any structure in the

Residual undulations in two SNe (2018gv & 2018hgc, Fig 1 & 2) remain after trend filtering and

We plan to monitor future bright supernovae (e.g. from ZTF) in the blue using the 1.2-m Kryoneri and 2.3-m Aristarchos telescopes & Gaia science alerts follow-up network