Radio and Submillimetre Constraints on the Pulsar-Driven Supernova Model

Conor Omand

Based on:

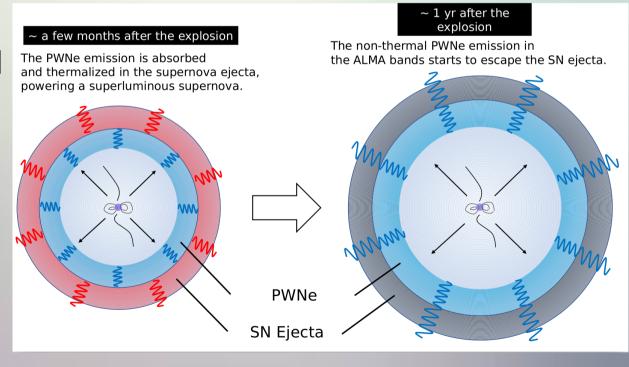
Omand, Kashiyama, Murase (2018) Omand, Kashiyama, Murase (in

prep)

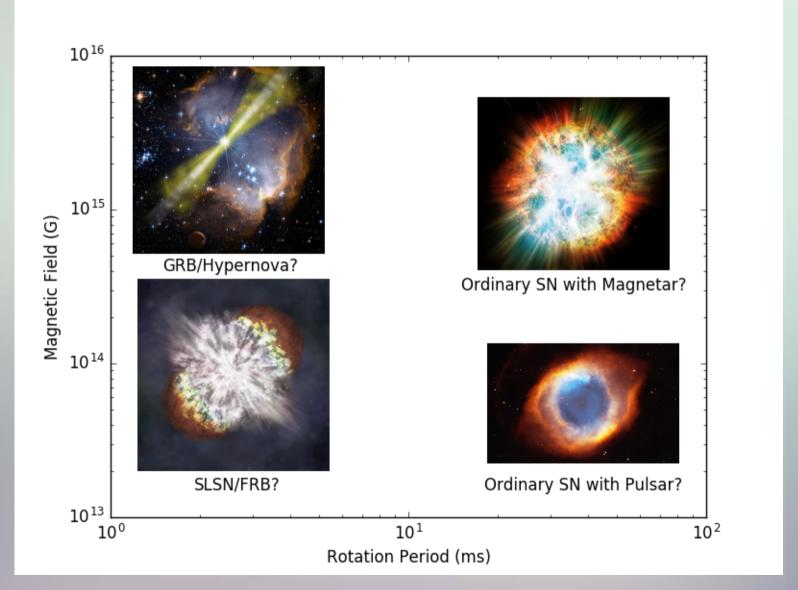
Law, Omand et al. (in prep) Murase, Omand et al. (in prep)

VLA/NRAO/AUI/NSF; Chandra/CXC; Spitzer/JPL-Caltech; XMM-Newton/ESA; and Hubble/STScI. https://commons.wikimedia.org/w/index.php?curid=5880957)

Collaborators


Theory:		ALMA/NOEMA:	
K. Kashiyama	Tokyo University	K. Murase	Penn State University
K. Murase	Penn State University	K. Kashiyama	Tokyo University
		C. Law	UC Berkeley
VLA:		G. Bower	Academica Sinica
C. Law	UC Berkeley	H. Nagai	NAOJ
K. Kashiyama	Tokyo University	R. Margutti	Northwestern University
K. Murase	Penn State University	D. Coppejans	Northwestern University
G. Bower	Academica Sinica	G .Terreran	Northwestern University
K. Aggarwal	West Virginia University	E. Berger	Harvard University
S. Burke-Spolaor	NRAO	R. Chornock	Ohio University
B. Butler	NRAO	K. Alexander	Harvard Univeristy
P. Demorest	NRAO	M. Nicholl	University of Edinburgh
T. Lazio	Caltech	D. Fox	Penn State University
J. Linford	West Virginia University	P. Mészáros	Penn State University
M. Rupen	DRAO		

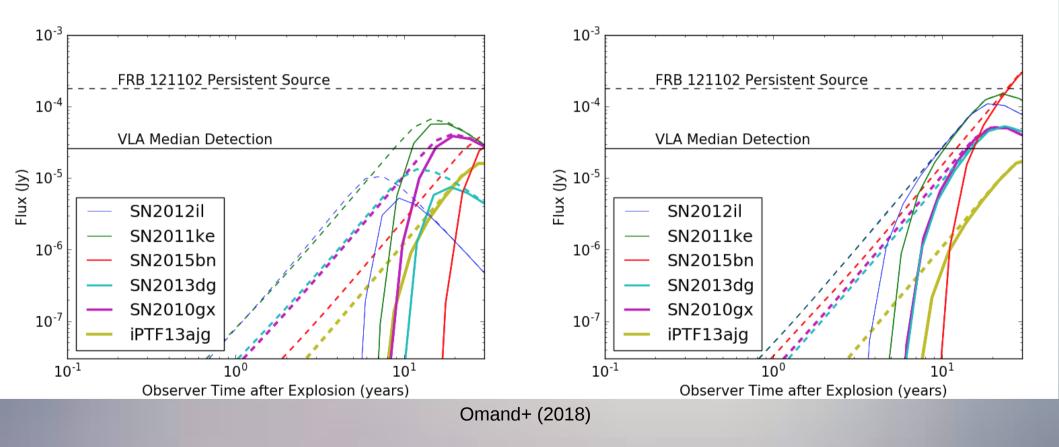
24/05/2019


Fifty-One Ergs 2019

What is the Pulsar-Driven Supernova Model?

- The discovery of SLSNe and GRBs necessitates an energy source
- A newly formed highly magnetic millisecond pulsar spins down inside a young supernova, injecting energy into the ejecta
- In order to test the pulsar-driven SN model for SLSNe, late-phase emission should be probed

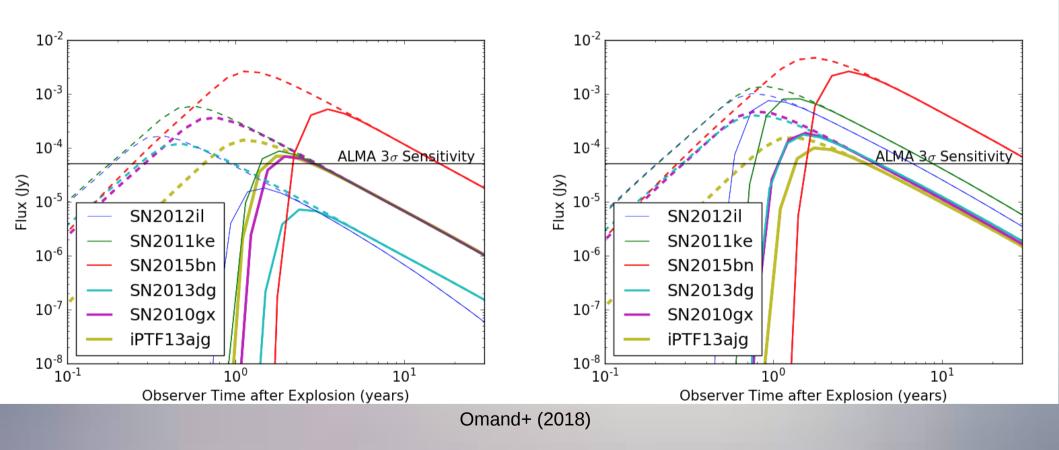
A variety of Pulsar-Driven Transients


Strategy

- Predict emission from young SLSN remnants in radio/submillimetre (Omand+ (2018))
- Select promising candidates in submillimetre and observe (Murase, Omand+ (in prep))
- Observe oldest candidates in radio (Law, Omand+ (in prep))
- Revise the model if needed (Omand+ (in prep))

Predictions (1 GHz Radio emission)

P = 1 ms


$$P = P_{max}$$

Predictions (100 GHz Radio emission)

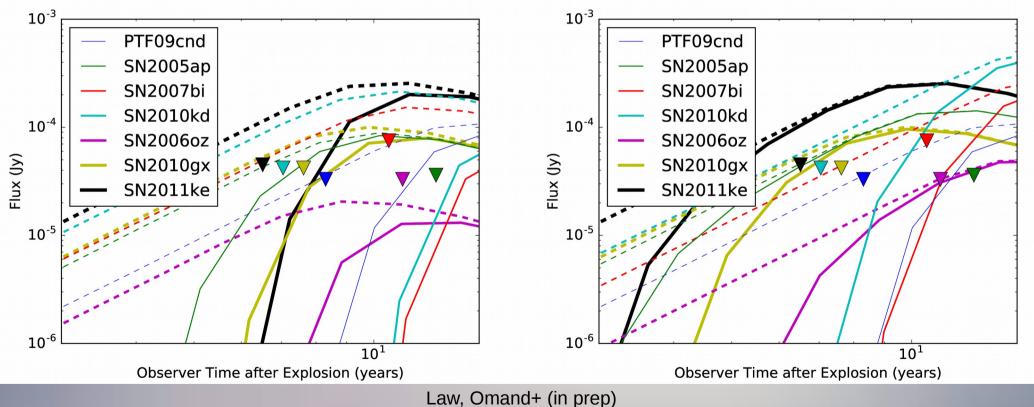
P = 1 ms

$$P = P_{max}$$

VLA Targets

Name	Redshift	R.A.	Decl.	Age
		(J2000)	(J2000)	(yr)
$\rm SN~2005ap^a$	0.283	13:01:14:83	+27:43:32:3	9.9
SN~2007bi	0.127	13:19:20:14	+08:55:43:7	9.4
SN 2006oz	0.396	22:08:53:56	+00:53:50:4	8.0
PTF10hgi ^b	0.098	16:37:47:04	+06:12:32:3	6.8
PTF09cnd	0.258	16:12:08:94	+51:29:16:1	6.6
SN 2010kd	0.101	12:08:00:89	+49:13:32:9	6.4
SN 2010gx	0.23	11:25:46:71	-08:49:41:4	6.2
PTF09cwl	0.349	14:49:10:08	+29:25:11:4	6.1
SN 2011ke	0.143	13:50:57:77	+26:16:42:8	5.7
PTF09atu	0.501	16:30:24:55	+23:38:25:0	5.5

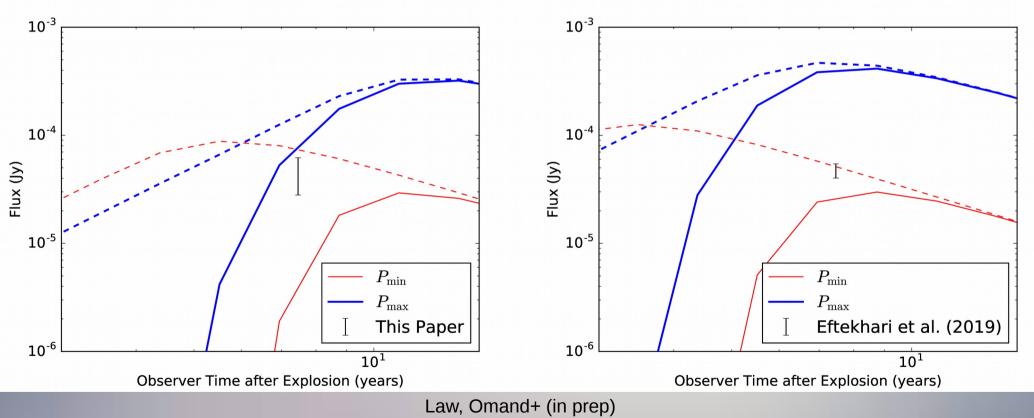
 $[^]a$ Late-time radio limit at 1.4 GHz by Schulze et al. (2018).


J			
Name	Epoch	Observing time	Sensitivity
	(MJD)	(min)	$(\mu \text{Jy beam}^{-1}; 1\sigma)$
SN~2005ap	58060	28.5	12
	58131	28.5	15
SN 2007bi	58074	17.2	25
	58128	17.2	27
SN 2006oz	58036	30.3	11
	58124	30.3	12
PTF10hgi	58045	13.2	19
	58130	13.2	22
PTF09cnd	58045	23.4	12
	58130	23.4	11
SN 2010kd	58074	13.8	14
	58128	13.8	31
SN 2010gx	58074	20.6	14
	58128	20.6	16
PTF09cwl	58060	36.5	9
	58131	36.5	20
SN 2011ke	58060	17.6	15
	58131	17.6	18
PTF09atu	58045	54.7	12
	58130	54.7	9

 $[^]b$ Late-time radio detection at 6 GHz by Eftekhari et al. (2019).

VLA Non-detections

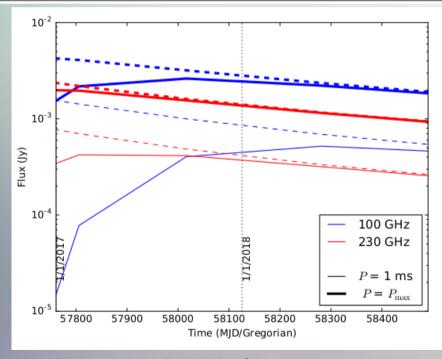
P = 1 ms

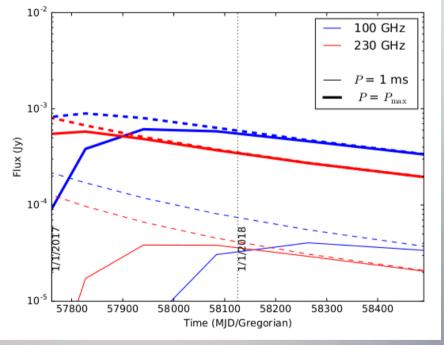

$$P = P_{max}$$

PTF10hgi

 $3 \text{ GHz} - 2.6\sigma \text{ detection}$

 $6 \text{ GHz} - 6.7\sigma \text{ detection}$

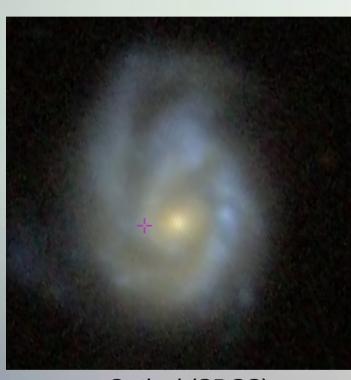

VLA Observations Summary


- 9 non-detections and 1 marginal detection
- No FRBs found
- A few pulsar parameters constrained by non-detections
- SN2005ap should have been detected if our model/predictions were correct
- PTF10hgi consistent with models more work needed to determine pulsar parameters

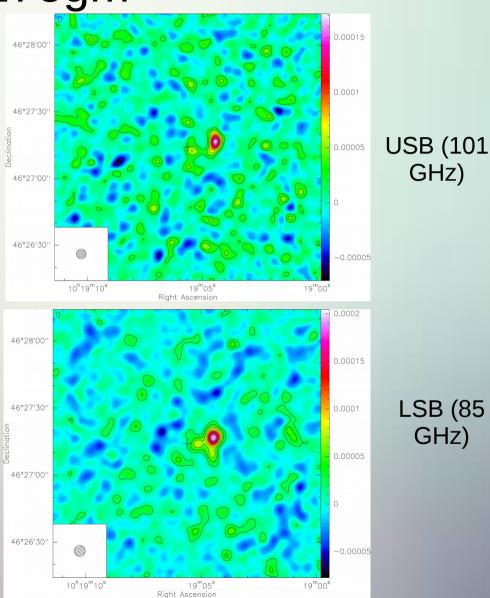
Submillimetre Targets

Name	redshift	RA	Dec	$P_{-3}, B_{13}, M_{\rm ej} \ (\rm min)$	$P_{-3}, B_{13}, M_{\rm ej} \ ({\rm max})$
SN 2015bn	0.1136	11:33:41.57	+00:43:32.2	1.0, 2.1, 17	1.4, 1.0, 5
SN 2016 ard	0.2	14:10:44.56	-10:09:35.42	1.0, 6.0, 12	2.2, 1.7, 1.5

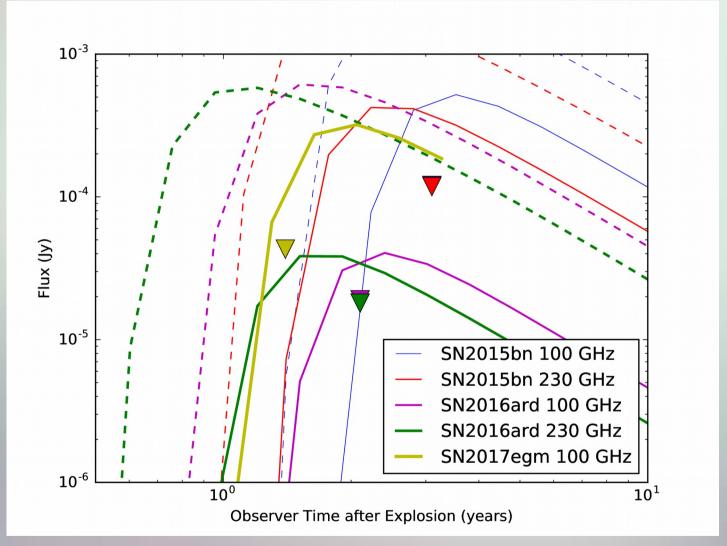
Name	Redshift	RA	Dec	$P_{-3}, B_{13}, M_{\rm ej} ({\rm min})$	$P_{-3}, B_{13}, M_{\rm ej} \ ({\rm max})$
SN2017egm	0.030721	10:19:05.620	+46:27:14.08	1.0, 13.0, 11.5	2.0, 2.0, 2.0



SN2015bn


Predictions

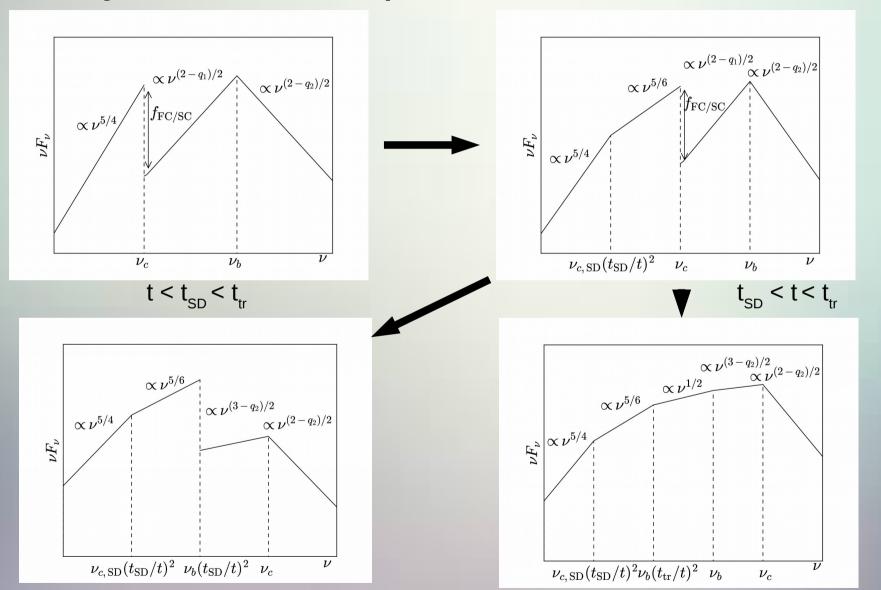
SN2016ard


SN2017egm

Optical (SDSS)

Constraints

Murase, Omand+ (in prep)


Submillimetre Summary

- 3 Non-detections below P_{min} expectations
- Suggests problem with the model, either:
 - SLSNe are not pulsar driven
 - Ejecta is more heavily ionized than predictions
 - Electron injection spectrum is not Crab-like
- Third seems most likely, and easiest to correct

Changing the Model

- Changing the injection spectrum to be sharply peaked may resolve theory/observation tension
- Hysteresis effects in the PWN evolution may become important for the relic electron spectrum
- FRB 121102 has a spectral break at 10 GHz may be effect of relic electrons
- Analytical derivation will give us spectral indices useful to diagnose future numerical calculations

Analytical PWN Spectrum: Time Evolution

Omand+ (in prep)

24/05/2019

 $t_{SD} < t_{tr} < t$ (μ_{+} constant)

Fifty-One Ergs 2019

 $t_{SD} < t_{tr} < t$ (y_h constant)

17

Fitting the Sources

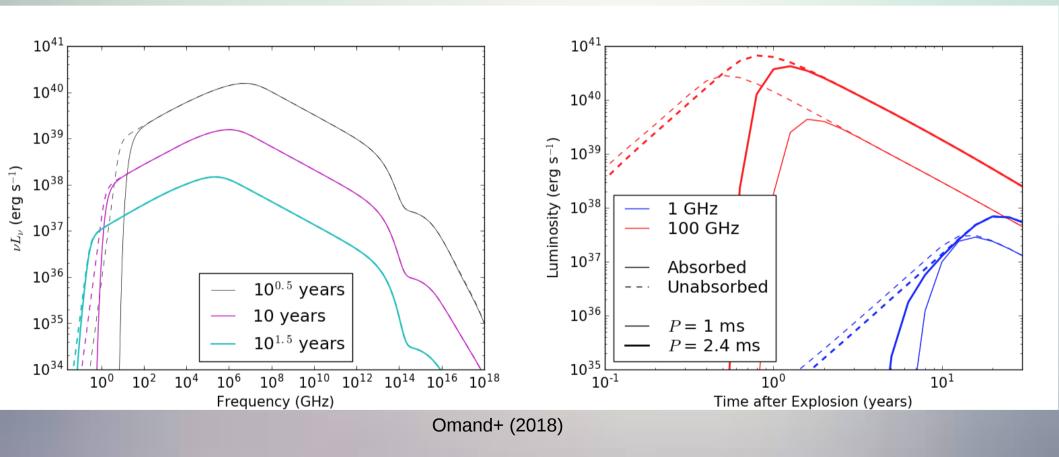
PTF10hgi

Omand+ (in prep)

Summary

- Radio/submillimetre predictions found several candidates for follow-up
- Radio observations got one marginal detection expected another PWN detection
- Submillimetre observations got no detections, three expected
- Revised model can fit spectral break in FRB 121102, consistent with PTF10hgi

A week of



friends and FOEs

Predictions (Radio emission)

Broadband Spectra

Intrinsic Light Curves

Analytical PWN Spectrum: Overview

Most electrons injected above y_b

$$\frac{d\dot{N}_e}{d\gamma_e} = \frac{\epsilon_e L_{\rm SD}(t)}{\mathcal{R}_{b,e} m_e c^2 \gamma_b(t)} \begin{cases} (\gamma_e / \gamma_b(t))^{-q_1} & (\gamma_e < \gamma_b(t)), \\ (\gamma_e / \gamma_b(t))^{-q_2} & (\gamma_e > \gamma_b(t)). \end{cases}$$

- All electrons above y_c cooled, become relic electrons
- y_c increases with time, becomes larger than y_b at t_{tr}
- Two extreme cases: y_b constant, or μ_{\pm} constant

Analytical PWN Spectrum: Key Values

$$\nu_b = \frac{3}{4\pi} \gamma_b^2 \frac{eB_{\rm PWN}}{m_{\rm e}c},$$

$$\approx 2.98 \times 10^9 \epsilon_{B,-3}^{1/2} v_{\rm w,9}^{-3/2} B_{13}^3 P_{-3}^{-4} \gamma_{b,5}^2 \times$$

$$\begin{cases} (t/t_{\rm SD})^{-1} & (t < t_{\rm SD}) \\ (t/t_{\rm SD})^{-3/2} & (t > t_{\rm SD}) \end{cases} \text{ GHz}.$$

$$\nu P_{\nu}(\nu_b) \approx 4.3 \times 10^{45} \epsilon_e B_{13}^2 P_{-3}^{-4} (1+Y)^{-1} \mathcal{R}_{b,e}^{-1} f_{SD}(t) \text{ erg/s}$$

$$\nu_c = 0.69 \epsilon_{B,-3}^{-3/2} v_{\text{w},9}^{9/2} B_{13}^{-5} P_{-3}^8 \begin{cases} (t/t_{\text{SD}}) & (t < t_{\text{SD}}), \\ (t/t_{\text{SD}})^{5/2} & (t > t_{\text{SD}}) \end{cases} \text{ MHz.}$$

$$\nu P_{\nu}(\nu_{c}) \approx 3.12 \times 10^{44} \epsilon_{B,-3}^{-1} B_{13}^{-2} P_{-3}^{2} v_{w,9}^{3} \mathcal{R}_{b,e}^{-1} \times \begin{cases} (t/t_{\rm SD}) & (t < t_{\rm SD}), \\ (t/t_{\rm SD})^{-1} & (t > t_{\rm SD}) \end{cases} \text{ erg/s }.$$