The population of Type II supernova progenitor stars with new mid-infrared limits

C. Kilpatrick

Charlie Kilpatrick UC Santa Cruz

FOE 2019

What happens to the high-mass RSGs?

No RSG progenitor stars with $\log L > 5.2$ are observed to exist

We know RSGs with log L = 5.2-5.5 exist (AH Sco, UY Sct, KW Sgr, etc.). Why no SN progenitor stars in this range?

A mass threshold for successful SNe from RSGs?

Credit: NASA/OSU See Adams+2017

Is this a fundamental limit and high-mass **RSGs collapse to BH?**

F814W

SN 2003gd (9 Mpc; Smartt+2004)

SN 2005cs (7 Mpc; Li+2006)

HST enables detection of massive progenitor stars up to \sim 30-40 Mpc

Mostly RSG progenitors of SNe II-P

There are >20 confirmed progenitor stars of SNe II

SN 2012aw SN 2012ec (10 Mpc; Van Dyk+2013) (17 Mpc; Maund+2013)

What data go into RSG mass measurements?

FOE 2019

Red supergiants are dusty

SEDs of RSGs peak at 1-2 microns and have significant dust emission >3 microns

Observed SED = Reddened intrinsic star + **Dust emission**

FOE 2019

C. Kilpatrick

~17% of RSGs only have optical constraints

C. Kilpatrick

~17% of RSGs only have optical constraints

C. Kilpatrick

~17% of RSGs only have optical constraints

FOE 2019

Progenitor of SN II 2017eaw

Four parameters: L*, T*, CSM extinction, T_{dust}

Modeling 0.6-5 µm SED reveals 10-60% more luminosity

than we would infer from the optical **SED** alone

Kilpatrick & Foley 2018

metallicity, dust composition, grain size distribution, wind speed, dust geometry

Systematic uncertainties: stellar rotation,

High-resolution spectra probe this environment

Can we probe this material around RSG progenitors?

Betelgeuse; Richards+2013

Go to the infrared (as red as possible!)

Spitzer/IRAC probes hot dust around SN II progenitors

NGC 6946 from SINGS; Kennicutt+2003

Limits are typically 21-23 mag Probes 2017eaw-like RSGs to 10-20 Mpc

4/8 exhibit evidence for mid-IR excess at SN location

But you have to go back and verify that the SN is gone...

Spitzer is currently best way to probe this material!

Kilpatrick+2019, in prep.

Spitzer is currently best way to probe this material!

Kilpatrick+2019, in prep.

25% of these SNe exhibit a significant mid-IR excess

Inferred luminosities are up to 40% brighter

Maximum luminosity pushed to $log(L/L_{\odot}) = 5.35$ $(M = 24 M_{\odot})$, but also very hard to constrain

Future of progenitor star studies: JWST

electron

Photon-to

5-28 micron broadband photometry with JWST/MIRI

HST-like depth resolution at 5-8 microns and 0.82 arcsec resolution at 25 micron

Extremely important to get SN host galaxies *early*

G. Rieke+2015 FOE 2019

Summary

- at Type II supernova progenitors

- constrain all types of dust

• We are starved for photons and spectrum looking

• SNe with mid-IR excess have systematically higher luminosities (10-60%) when properly accounted for

• Very difficult to infer a maximum luminosity for RSGs as a whole with poorly constrained SEDs

• Spitzer can help constrain hot dust, but JWST will

