Emission from thermonuclear explosions in white dwarf TDEs

Kojiro Kawana (U. Tokyo)

collaborators:

Keiichi Maeda (Kyoto U.), Naoki Yoshida, Ataru Tanikawa (U. Tokyo)

Kawana K., Tanikawa A., Yoshida N. (2018) Kawana et al. (in prep)

FOE 2019

TDE of Main Sequence

TDE of White Dwarf

TDE of White Dwarf

WD TDE hydrodynamical simulations

 $M_{\rm BH} = 10^{2.5} M_{\odot}, M_{\rm WD} = 0.2 M_{\odot}, \beta = R_t / R_p = 5.0$

Motivations to study WD TDEs

- Tidal compression at pericenter
- → Shock heating & detonation
- → SN Ia-like transients?

- Range of $M_{\rm BH}\,$ is restricted. $R_t > R_p > R_S, R_{\rm WD}$

=> Max. mass of BH (Hills mass):

$$M_H \simeq 2 \times 10^5 \, M_\odot \left(\frac{M_{\rm WD}}{0.6M_\odot}\right)^{-1/2} \left(\frac{R_{\rm WD}}{10^9 \, {\rm cm}}\right)^{3/2}$$

SMBHs cannot tidally disrupt WDs → Good probe to study IMBHs

Observations of WD TDEs

• So far, some possible (but unconfirmed) candidates

ultra long GRB	Swift J1644+57 / GRB 110328A (Krolik & Piran 2011) GRB060218 + SN2006aj (Shcherbakov+ 2013)
	GRB111209A + SN2011kI <mark>(loka+ 2016)</mark>
X-ray transient	XRT 000519 <mark>(Jonker+ 2013)</mark> CDF-S XT1 <mark>(Bauer+ 2017)</mark>
Fast Optical Blue Transient	AT2018cow <mark>(Kuin+ 2018)</mark>

Optical counterparts from nuclear burning have not been found yet.

LSST may find ~10 events / yr (highly dependent on IMBH density)

MacLeod+ (2016)

Observational signatures MacLeod+ 2016

CO WD, $M_{\rm WD} = 0.6 M_{\odot}$, $M_{\rm BH} = 500 M_{\odot}$, $\beta = R_t / R_p = 5.0$ Rosswog+ (2009)

Spectra at t = 20 days

- Similar to SNe la
- Strong viewing angle dependence
- Key feature: Doppler shift ~ 10⁴ km s⁻¹

Questions

- How about variety of observational signatures?
- \rightarrow Observational signatures for other parameter cases?

 2π

Ð

angle

iewing

Helium WD TDE => Calcium-rich transients?

Our study: thermonuclear emission from Helium WD TDEs

Ca-rich transients

- Similar to SNe la
- Fainter, faster than SNe la
- Large calcium abundance
- Small nickel abundance
- In the outskirts of galaxies
- Event rate: 33–94% of the local volumetric SN Ia rate

Perets+ (2010), Kasliwal+ (2012), Valenti+ (2014), Frohmaier+ (2018)

Methods

1. SPH simulation coupled with simplified nuclear reactions

- $M_{WD} = 0.2 Msun$, ⁴He composition, HELMHOLTZ EoS
- $M_{BH} = 10^{2.5}$ Msun, $\beta := R_t / R_p = 5.0$
- $N_{particle} \simeq 800,000$
- α chain network w/ 13 nuclear species Timmes+ (2000)
- Follow until homologous expansion is realized (2000 sec)
- 2. Detailed nucleosynthesis calculation with torch Timmes (1999) Timmes+ (2000)

- Follow nuclear reaction during tidal detonation phase
- 495 isotopes are considered

3. Synthetic observation with Monte Carlo radiative transfer

- use HEIMDALL Maeda (2006), Maeda+ (2014)
- In 3D, under approximation of homologous expansion

WD TDE hydrodynamical simulations

 $M_{\rm BH} = 10^{2.5} M_{\odot}, M_{\rm WD} = 0.2 M_{\odot}, \beta = R_t / R_p = 5.0$

Distribution of unbound ejecta

Dynamics & Nuclear Composition of Ejecta

- M_{ej} = 0.12 Msun
- bulk velocity: 12,000 km/s
- $E_{kin} = 6.5 \times 10^{49} \text{ erg} \text{ (wrt ejecta center)}$

• M_{Ni} = 0.03 Msun, M_{Ca} = 1.4 x 10⁻³ Msun

Intermediate Mass Elements are dominated by ⁴⁰Ca, ²⁸Si subdominant

Lightcurve: mean over all the angle

- $\Delta t_{1mag} \simeq 10 \text{ d}$, $M_{peak} \simeq -16.5 \text{ mag} (L_{peak} \simeq 1.2 \text{ x} 10^{42} \text{ erg/s})$
- Rapid color evolution from blue to red

Lightcurve compared with CO WD TDE

Helium WD TDE shows faster & fainter lightcurve than CO WD TDE <= smaller amount of ejecta and ⁵⁶Ni 15

Timescale - Luminosity diagram

16

Spectra: in comoving frame, mean over all the angle

- Weak (No) silicon lines
- Fe lines + Strong Ca lines
- ⇐ peculiar composition arising from He burning

Viewing angle effect

Doppler shift w/ v \lesssim 12,000 km/s, which reflects bulk motion of ejecta

Comparison with Ca-rich transients: lightcurve

Compared with Ca-rich transients, helium WD TDEs are

- Brighter by ~1-2 mag at the peak
- bluer at early phase

Due to more ⁵⁶Ni mass (0.03 Msun) than Ca-rich (≤ 0.015 Msun)

Perets+ (2010), Kasliwal+ (2012), Valenti+ (2014)

Comparison with Ca-rich transients: spectra

Thick: our model (θ =0.5 π , ϕ =0.9 π), thin: SN2010et/PTF10iuv

Kasliwal+ (2012)

Spectra of He WD TDE compared with those of Ca-rich:

- commonly show strong Ca lines
- lack of silicon lines in He WD TDE

Fallback accretion => what kind of emission?

- Ultra long GRB (t ~ 10⁴ sec) if on-axis Shcherbakov+ (2013), MacLeod+ (2014)
- X-ray transients (t ~ 10⁴ sec)
 Jonker+ (2013), Bauer+ (2017)
- Eddington limited X-ray emission from accretion disk MacLeod+ (2016)
- Fast & bright optical transients like AT2018cow

If Eddington limited or if luminosity follows the fallback rate, thermonuclear emission dominates t \gtrsim day

Kuin+ (2018)

Future work: Variety of emission from WD TDEs

3 parameters: M_{WD} , M_{BH} , β (impact parameter)

22

Summary

WD TDEs uniqueness: IMBH search & thermonuclear explosion

We perform SPH simulations of Helium WD TDEs and Monte Carlo radiative transfer simulation for synthetic observation.

Helium WD TDE characteristics:

- rapid evolution ($\Delta t_{1mag} \simeq 5-10 \text{ d}$)
- rapid color evolution from blue to red
- $L_{peak} \simeq 1-2 \times 10^{42} \text{ erg/s}, M_{bol, peak} \simeq -16.5 \text{ mag}$
- Weak (No) silicon lines, strong Ca lines
- Doppler shift w/ v \lesssim 12,000 km/s, depending on viewing angle

Helium WD TDE as an origin of Ca-rich transients?

- ✓ strong Ca lines, similar timescale (t \simeq 10 d)
- Doppler shift w/ v \lesssim 12,000 km/s, but okay if we see the TDE ejecta from side
- X weak silicon lines in Helium WD TDEs
- X bluer and brighter than Ca-rich transients.

Emission from WD TDEs have a large variety, depending on parameters