May 20th~24th FOE2019

Effects of nucleon recoills for neutrino spectra
In core-collapse supernovae

Waseda Univ. Yamada Lab. PD Chinami Kato

Collaborate with H.Nagakura(Princeton), Y.Hori(Waseda), S.Yamada(Waseda)

Abstract

The energy exchange by nucleon recoils in neutrino-nucleon scattering is one of the important factors for core-collapse supernovae. It is known that
nucleon recoils change neutrino spectra around neutrino sphere due to the numerous number of scatterings. A discretized method is adopted to solving
neutrino transport in almost dynamical simulations. Due to their huge computational costs, however, we can not take enough number of energy bins to
resolve the small energy exchange and need a special technique. We hence develop a new code for neutrino transport with Monte Carlo (MC) method
and investigate the effects of nucleon recoils for neutrino spectra by steady-state calculations on a static background. Finally, We suggest a new way to
take nucleon recoils into the discretized method using number and energy conservations in energy bins.
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Suggestion a new way to incorporate nucleon recoils By steady-state calculations, we investigate the effects of
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We investigate the effects of nucleon recoils in nucleon scatterings for neutrino spectra in detail. We find that the average energy of heavy-lepton
neutrinos reduces ~15%. For anti-electron neutrinos, even if the number of nucleon scattering is the largest among neutrino reactions, their spectra are
not changed by nucleon recoils due to the small energy exchange. We also suggest a new way to incorporate nucleon recoils into the discretized method.
In flat model, spectra deviate from correct ones by ~20% due to the overestimation of energy exchange, whereas in NE model, we can reconstruct

spectra within a few % difference.



