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● 3D modeling has reached mature stage.                                                            

3D differs from 2D in many aspects, explosions more difficult than in 2D.

                            
● M <~ 12�13 Msun stars explode by neutrino-driven mechanism in 3D.

● First neutrino-driven 3D explosions of 15−40 Msun progenitors                 
(with rotation, 3D progenitor perturbations, or slightly modified neutrino opacities).

● Explosion energy can take several seconds to saturate !                             
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3D Core-Collapse SN Explosion Models

Oak Ridge (Lentz+ ApJL 2015):  15 Msun nonrotating progenitor  (Woosley & Heger 
2007)

Tokyo/Fukuoka (Takiwaki+ ApJ 2014):  11.2 Msun nonrotating progenitor                             
(Woosley et al. 2002)

Caltech/NCSU/LSU/Perimeter  (Roberts+ ApJ 2016; Ott+ ApJL 2018):                   
27 Msun nonrotating progenitor (Woosley et al. 2002), 

15, 20, 40 Msun nonrotating progenitors (Woosley & Heger 2007)

Garching/QUB/Monash  (Melson+ ApJL 2015a,b; Müller 2016; Janka+ ARNPS 2016,              

               Müller+ MNRAS 2017, Summa+ ApJ 2018):  
          9.6, 20 Msun nonrotating progenitors (Heger 2012; Woosley & Heger 2007)

          18 Msun nonrotating progenitor    (Heger 2015)

          15 Msun rotating progenitor     (Heger, Woosley & Spuit 2005, modified rotation)

          9.0 Msun nonrotating progenitor    (Woosley & Heger 2015)

Princeton (Vartanyan+ MNRAS 2019a, Burrows+ MNRAS 2019):                 
9, 10, 11, 12, 13, 16 Msun nonrot. progenitors  (Woosley & Heger 2007, Sukhbold+2016)



3D Core-Collapse SN Explosion Models
Monash/QUB  (Müller+ MNRAS 2018, Müller+MNRAS 2019):
           z9.6, s11.8, z12, s12.5 Msun nonrotating progenitors (Heger 2012),

           he2,8, he3.0, he3.5 Msun He binary stars, ultrastripped SN progenitors 
                                                                                                                                     (Tauris 2017)
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● Progenitors are 1D, but composition-shell structure and initial progenitor-core 
asymmetries can affect onset of explosion.

● 3D simulations still need higher resolution for convergence.
● Full multi-D neutrino transport versus �ray-by-ray� approximation.
● Uncertain/missing physics?                                                                            

Dense-matter nuclear and neutrino physics? Neutrino flavor oscillations? 
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1.  Pre-collapse
3D Asymmetries
in Progenitors

With Naveen Yadav (postdoc), Tobias Melson (ex-postdoc)
and Bernhard Müller and Alex Heger (Monash University);

arXiv:1905.04378



3D Core-Collapse SN Progenitor Model
18 Msun (solar-metallicity) progenitor (Heger 2015)

3D simulation of last 5 minutes of O-shell 
burning. During accelerating core contraction 
a quadrupolar (l=2) mode develops with 
convective Mach number of about 0.1.

B. Müller, Viallet, Heger, & THJ, ApJ 833, 124 (2016)
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3D Core-Collapse SN Explosion Model
18 Msun (solar-metallicity) progenitor (Heger 2015)

3D simulation of last 5 minutes of O-shell 
burning. During accelerating core contraction 
a quadrupolar (l=2) mode develops with 
convective Mach number of about 0.1.

This fosters strong postshock convection 
and could thus reduces the criticial neutrino 
luminosity for explosion.

B. Müller, PASA 33, 48 (2016); 
Müller, Melson, Heger & THJ, MNRAS 472, 491 (2017)

1.4 s post bounce
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3D Simulations of Convective Oxygen Burning 
in ~19 M

sun
 Pre-collapse Star

Initial (1D) conditions 7 minutes prior to core collapse.



1D 3D

Neon-oxygen-shell Merger in a 
3D Pre-collapse Star of  ~19 M

sun
Convectively Ledoux-stable (BV frequency < 0) and

Ledoux-unstable regions (BV frequency > 0) regions.



1D 3D

Net energy generation rate 
(nuclear burning minus neutrino cooling).

Neon-oxygen-shell Merger in a 
3D Pre-collapse Star of  ~19 M

sun



Yadav et al., arXiv:1905.04378

Neon-oxygen-shell Merger in a 
3D Pre-collapse Star of  ~19 M

sun

Flash of Ne+O burning creates large-scale asymmetries in 
density, velocity, Si/Ne composition

Radial velocity fluctuations Density variations 



SN-remnant  
Cassiopeia A 

X-ray (CHANDRA, green-blue);  optical (HST, yellow);  IR (SST, red)

CAS A



SN-remnant  
Cassiopeia A 

X-ray (CHANDRA, green-blue);  optical (HST, yellow);  IR (SST, red)



44Ti Asymmetry in the CAS A Remnant

Grefenstette et al., Nature 506 (2014) 340 NuSTAR observations



Neutron Star Recoil and 
Nickel & 44Ti Distribution

Grefenstette et al., Nature 506 (2014) 340 Wongwathanarat et al., ApJ 842 (2017) 13



Neutron Star Recoil and 
Nickel & 44Ti Distribution

Grefenstette et al., Nature 506 (2014) 340 Wongwathanarat et al., ApJ 842 (2017) 13



Chemical Asymmetries in CAS A Remnant

Reverse-shock heated iron is visible in three big "fingers"

Wongwathanarat et al., ApJ 842 (2017) 13



Chemical Asymmetries in CAS A Remnant

Red: Ar, Ne, and O (optical)
Purple: Iron (X-ray)

Image: Robert Fesen and Dan Milisavljevic, 
using iron data from DeLaney et al. (2010)



CAS A Si-Ne-rich Wide-angle "Jets"

Credit: NASA/CXC/GSFC/U.Hwang et al.

● Wide-angle features in NE and SW
directions with up to 15,000 km/s
expansion velocity.

● Rich in Si and Ne, but poor in iron.
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2.  Resolution 
Dependence of

CCSN Simulations
With PV Code
With Tobias Melson (ex-postdoc);  

arXiv:1904.01699



Exploding 3D Core-Collapse SN Model
20 Msun (solar-metallicity) progenitor (Woosley & Heger 2007)

 Melson et al., 
ApJL 808 (2015) L42 

Effective reduction of neutral-current neutrino-
nucleon scattering by ~15%

Explore uncertain aspects of 
microphysics in neutrinospheric region:
Example: strangeness contribution to nucleon 
spin, affecting axial-vector neutral-current 
scattering of neutrinos on nucleons

3D

3D

2D

2D



Improved Angular Resolution in 3D: 
Newly Implemented SMR Grid

Melson et al., arXiv:1904.01699

Static mesh refinement (SMR) 
to add angular resolution in 
turbulent postshock layer, 
where neutrinos are only 
weakly coupled to stellar 
medium (on order 5�10% 
interaction probability)



Comparing Explosions With Full Neutrino 
Transport and Different Angular Resolution



Resolution Study of 20 Msun Model With
Simple Neutrino Heating & Cooling Treatment

1o
SMR

4o 2o 0.5o

Using axis-free
Yin-Yang
coordinate grid



Resolution Study of 20 Msun Model With
Simple Neutrino Heating & Cooling Treatment



Resolution Study of 20 Msun Model With
Simple Neutrino Heating & Cooling Treatment
Higher angular resolution and lower numerical viscosity leads to faster 
growth of hydrodynamic instabilities (convection, SASI) in postshock 
layer, seeded by the same small (0.1% cell-to-cell) density perturbations. 



Resolution Study of 20 Msun Model With
Simple Neutrino Heating & Cooling Treatment

Static mesh refinement (SMR) 
boundaries create artifacts: 
convert kinetic energy to thermal 
energy while the sum of both is 
conserved  ===> 
turbulent pressure is reduced, 
enhanced thermal pressure cannot 
compensate



Polar coordinate grid:   Higher angular 
resolution near the poles can trigger faster 
growth of hydrodynamic instabilities 
(convection, SASI) in the postshock layer. 
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Resolution Dependence With 
Polar Coordinate Grid
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3.  RbR+ vs. FMD-M1
3D Neutrino Transport

With Robert Glas (PhD student);  
ApJ 873:45 (2019)



Using polar coordinate grid;
RbR+ results depend strongly on 
resolution and coordinate setup.
Severe differences between RbR+
and fully multi-dimensional (FMD)
transport.    (See also Dolence+2015,
Sumiyoshi+2015, Skinner+2016, Just+2018)

RbR+ vs. FMD-M1 Transport in 2D:  9 & 20 M
sun

 Stars



Using polar coordinate grid;
RbR+ results show minor quantitative
and no qualitative differences compared to 
fully multi-dimensional (FMD-M1) transport.

RbR+ vs. FMD-M1 Transport
in 3D:  Exploding 9 M

sun
 Star



RbR+ vs. FMD-M1 Transport in 2D and 3D:
Exploding 9 M

sun
 Star

Severe differences
in 2D of RbR+ vs. 
FMD-M1 transport. 

Small differences
in 3D of RbR+ vs. 
FMD-M1 transport. 



Using polar coordinate grid;
RbR+ results show moderate quantitative
but no qualitative differences compared to 
fully multi-dimensional (FMD-M1) transport.

RbR+ vs. FMD-M1 Transport in
3D: Nonexploding 20 M

sun
 Star



Relative neutrino-flux variations with direction for electron neutrinos.
Time-averaged variations very similar for RbR+ and FMD-M1 transport. 

RbR+ vs. FMD-M1 Transport in 3D:
Nonexploding 20 M

sun
 Star



Time-averaged heating
rates are very similar in 3D.

RbR+ vs. FMD-M1
Transport in
3D: Nonexploding
20 M

sun
 Star

2D 3D 3D



Summary

1.  3D asymmetries in the pre-collapse progenitor are                 
     supportive to explosion, affect explosion asymmetry. 

2.  3D CCSN simulations with the Garching Prometheus-            
     Vertex code tend to converge around 1o angular resolution.

3.  Dynamical evolution of 3D models does not critically             
     depend on differences of RbR+ and FMD-M1 transport.
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