Max-Planck-Institut für Astrophysik

SFB 1258 Neutrinos Dark Matter Messengers

Fifty-One Ergs 2019 Raleigh, NC, May 20–24, 2019

Core-Collapse Supernova Modeling in Three Dimensions Recent Progress @ Garching

European Research Council Established by the European Commission

Supporting top researchers from anywhere in the world Hans-Thomas Janka MPI for Astrophysics

Contents

Brief overview: Status of 3D CCSN modeling

- 1. Pre-collapse progenitor asymmetries
- 2. Resolution dependence of 3D CCSN simulations (with the Garching *Prometheus-Vertex* code)
- 3. Ray-by-ray (RbR+) versus fully multi-dimensional (FMD-M1) neutrino transport in 3D

Shock revival

n, p

Proto-neutron star

0

Ni

n, p, α

Status of Neutrino-driven Mechanism in 3D Supernova Models

- 3D modeling has reached mature stage.
 3D differs from 2D in many aspects, explosions more difficult than in 2D.
- $M \ll 12-13 M_{sun}$ stars explode by neutrino-driven mechanism in 3D.
- First neutrino-driven 3D explosions of 15-40 M_{sun} progenitors (with rotation, 3D progenitor perturbations, or slightly modified neutrino opacities).
- Explosion energy can take several seconds to saturate !

3D Core-Collapse SN Explosion Models

Oak Ridge (Lentz+ ApJL 2015): 15 M_{sun} nonrotating progenitor (Woosley & Heger 2007)

Tokyo/Fukuoka (Takiwaki+ ApJ 2014): 11.2 M_{sun} nonrotating progenitor (Woosley et al. 2002)

Caltech/NCSU/LSU/Perimeter (Roberts+ ApJ 2016; Ott+ ApJL 2018):

27 Msun nonrotating progenitor (Woosley et al. 2002),

15, 20, 40 M_{sun} nonrotating progenitors (Woosley & Heger 2007)

Princeton (Vartanyan+ MNRAS 2019a, Burrows+ MNRAS 2019): 9, 10, 11, 12, 13, 16 M_{sun} nonrot. progenitors (Woosley & Heger 2007, Sukhbold+2016)

Garching/QUB/Monash (Melson+ ApJL 2015a,b; Müller 2016; Janka+ ARNPS 2016,

Müller+ MNRAS 2017, Summa+ ApJ 2018):

9.6, 20 M_{sun} nonrotating progenitors (Heger 2012; Woosley & Heger 2007)

18 M_{sun} nonrotating progenitor (Heger 2015)

15 M_{sun} rotating progenitor (Heger, Woosley & Spuit 2005, modified rotation)

9.0 M_{sun} nonrotating progenitor (Woosley & Heger 2015)

3D Core-Collapse SN Explosion Models

Monash/QUB (Müller+ MNRAS 2018, Müller+MNRAS 2019): z9.6, s11.8, z12, s12.5 M_{sun} nonrotating progenitors (Heger 2012), he2,8, he3.0, he3.5 M_{sun} He binary stars, ultrastripped SN progenitors (Tauris 2017)

Status of Neutrino-driven Mechanism in 3D Supernova Models

- 3D modeling has reached mature stage.
 3D differs from 2D in many aspects, explosions more difficult than in 2D.
- $M \ll 12-13 M_{sun}$ stars explode by neutrino-driven mechanism in 3D.
- First neutrino-driven 3D explosions of 15-40 M_{sun} progenitors (with rotation, 3D progenitor perturbations, or slightly modified neutrino opacities).
- Explosion energy can take several seconds to saturate !
- **Progenitors are 1D**, but composition-shell structure and initial progenitor-core asymmetries can affect onset of explosion.
- 3D simulations still need higher resolution for convergence.
- Full multi-D neutrino transport versus "ray-by-ray" approximation.
- Uncertain/missing physics?
 Dense-matter nuclear and neutrino physics? Neutrino flavor oscillations?

Status of Neutrino-driven Mechanism in 3D Supernova Models

- 3D modeling has reached mature stage.
 3D differs from 2D in many aspects, explosions more difficult than in 2D.
- $M \ll 12-13 M_{sun}$ stars explode by neutrino-driven mechanism in 3D.
- First neutrino-driven 3D explosions of 15-40 M_{sun} progenitors (with rotation, 3D progenitor perturbations, or slightly modified neutrino opacities).
- Explosion energy can take several seconds to saturate !
- **Progenitors are 1D**, but composition-shell structure and initial progenitor-core asymmetries can affect onset of explosion.
- 3D simulations still need higher resolution for convergence.
- Full multi-D neutrino transport versus "ray-by-ray" approximation.
- Uncertain/missing physics?
 Dense-matter nuclear and neutrino physics? Neutrino flavor oscillations?

1. Pre-collapse 3D Asymmetries in Progenitors

With Naveen Yadav (postdoc), Tobias Melson (ex-postdoc) and Bernhard Müller and Alex Heger (Monash University); arXiv:1905.04378

3D Core-Collapse SN Progenitor Model 18 M_{sun} (solar-metallicity) progenitor (Heger 2015)

3D simulation of last 5 minutes of O-shell burning. During accelerating core contraction a quadrupolar (I=2) mode develops with convective Mach number of about 0.1.

B. Müller, Viallet, Heger, & THJ, ApJ 833, 124 (2016)

x (x10^3 km)

x (x10^3 km)

3D Core-Collapse SN Explosion Model 18 M_{sun} (solar-metallicity) progenitor (Heger 2015)

3D simulation of last 5 minutes of O-shell burning. During accelerating core contraction a quadrupolar (I=2) mode develops with convective Mach number of about 0.1.

This fosters strong postshock convection and could thus reduces the criticial neutrino luminosity for explosion.

B. Müller, PASA 33, 48 (2016); Müller, Melson, Heger & THJ, MNRAS 472, 491 (2017)

3D Simulations of Convective Oxygen Burning in ~19 M Pre-collapse Star

Initial (1D) conditions 7 minutes prior to core collapse.

Neon-oxygen-shell Merger in a 3D Pre-collapse Star of ~19 M_{sun}

Convectively Ledoux-stable (BV frequency < 0) and Ledoux-unstable regions (BV frequency > 0) regions.

Neon-oxygen-shell Merger in a 3D Pre-collapse Star of ~19 M

Net energy generation rate (nuclear burning minus neutrino cooling).

Neon-oxygen-shell Merger in a 3D Pre-collapse Star of ~19 M

Flash of Ne+O burning creates large-scale asymmetries in density, velocity, Si/Ne composition

SN-remnant Cassiopeia A

CAS A

X-ray (CHANDRA, green-blue); optical (HST, yellow); IR (SST, red)

SN-remnant Cassiopeia A

X-ray (CHANDRA, green-blue); optical (HST, yellow); IR (SST, red)

⁴⁴Ti Asymmetry in the CAS A Remnant

NuSTAR observations

Grefenstette et al., Nature 506 (2014) 340

Neutron Star Recoil and Nickel & 44Ti Distribution

Wongwathanarat et al., ApJ 842 (2017) 13

Grefenstette et al., Nature 506 (2014) 340

Neutron Star Recoil and Nickel & 44Ti Distribution

Wongwathanarat et al., ApJ 842 (2017) 13

Grefenstette et al., Nature 506 (2014) 340

Chemical Asymmetries in CAS A Remnant

Reverse-shock heated iron is visible in three big "fingers"

0.63 3.84 7.04 10.25

Wongwathanarat et al., ApJ 842 (2017) 13

Chemical Asymmetries in CAS A Remnant

Red: Ar, Ne, and O (optical) Purple: Iron (X-ray)

Image: Robert Fesen and Dan Milisavljevic, using iron data from DeLaney et al. (2010)

CAS A Si-Ne-rich Wide-angle "Jets"

- Wide-angle features in NE and SW directions with up to 15,000 km/s expansion velocity.
- Rich in Si and Ne, but poor in iron.

Credit: NASA/CXC/GSFC/U.Hwang et al.

Status of Neutrino-driven Mechanism in 3D Supernova Models

- 3D modeling has reached mature stage.
 3D differs from 2D in many aspects, explosions more difficult than in 2D.
- $M \ll 12-13 M_{sun}$ stars explode by neutrino-driven mechanism in 3D.
- First neutrino-driven 3D explosions of 15-40 M_{sun} progenitors (with rotation, 3D progenitor perturbations, or slightly modified neutrino opacities).
- Explosion energy can take several seconds to saturate !
- **Progenitors are 1D**, but composition-shell structure and initial progenitor-core asymmetries can affect onset of explosion.
- 3D simulations still need higher resolution for convergence.
- Full multi-D neutrino transport versus "ray-by-ray" approximation.
- Uncertain/missing physics?
 Dense-matter nuclear and neutrino physics? Neutrino flavor oscillations?

2. Resolution Dependence of CCSN Simulations With PV Code

> With Tobias Melson (ex-postdoc); arXiv:1904.01699

Exploding 3D Core-Collapse SN Model 20 M_{sun} (solar-metallicity) progenitor (Woosley & Heger 2007)

Explore uncertain aspects of microphysics in neutrinospheric region: Example: strangeness contribution to nucleon spin, affecting axial-vector neutral-current scattering of neutrinos on nucleons Effective reduction of neutral-current neutrinonucleon scattering by ~15%

 $R_{
m shock}$

 $|R_{
m gain}
angle$ $R_{\rm NS}$

0.1

 10^{8}

 10^{7}

0.0

 $R \, [
m cm]$

Ap JL 808 (2015) L42

Improved Angular Resolution in 3D: Newly Implemented SMR Grid

E

 r_2

Static mesh refinement (SMR) to add angular resolution in turbulent postshock layer, where neutrinos are only weakly coupled to stellar medium (on order 5–10% interaction probability)

 r_1

Melson et al., arXiv:1904.01699

Comparing Explosions With Full Neutrino Transport and Different Angular Resolution

[my] h

Higher angular resolution and lower numerical viscosity leads to faster growth of hydrodynamic instabilities (convection, SASI) in postshock layer, seeded by the same small (0.1% cell-to-cell) density perturbations.

Static mesh refinement (SMR) boundaries create artifacts: convert kinetic energy to thermal energy while the sum of both is conserved ===> turbulent pressure is reduced, enhanced thermal pressure cannot compensate

Resolution Dependence With Polar Coordinate Grid

Polar coordinate grid: Higher angular resolution near the poles can trigger faster growth of hydrodynamic instabilities (convection, SASI) in the postshock layer.

Hanke et al., ApJ 755: 138 (2012)

Mass ^a	Dim ^b	$L_{\nu_e}{}^{c}$	Ang. ^d	N_r^{e}	t_{exp}^{f}	$\dot{M}_{\rm exp}{}^{\rm g}$	$t_{\rm sim}^{\rm h}$
(M_{\odot})		$(10^{52} \text{ erg s}^{-1})$	Res.		(ms)		(ms)
11.2	2D	0.8	3°	400	•••	•••	1017
11.2	2D	0.8	2°	400			979
11.2	3D	0.8	3 °	400			915
11.2	3D	0.8	2 °	400	•••	•••	758
11.2	2D	0.9	3°	400			1006
11.2	2D	0.9	2°	400			985
11.2	3D	0.9	3 °	400	731	0.085	954
11.2	3D	0.9	2 °	400			819
11.2	2D	1.0	3°	400	563	0.082	1053
11.2	2D	1.0	2°	400	527	0.086	1053
11.2	3D	1.0	3 °	400	537	0.086	684
11.2	3D	1.0	2 °	400	572	0.082	761

 Table 2

 Multi-dimensional Models with Different Resolution

Status of Neutrino-driven Mechanism in 3D Supernova Models

- 3D modeling has reached mature stage.
 3D differs from 2D in many aspects, explosions more difficult than in 2D.
- $M \ll 12-13 M_{sun}$ stars explode by neutrino-driven mechanism in 3D.
- First neutrino-driven 3D explosions of 15-40 M_{sun} progenitors (with rotation, 3D progenitor perturbations, or slightly modified neutrino opacities).
- Explosion energy can take several seconds to saturate !
- **Progenitors are 1D**, but composition-shell structure and initial progenitor-core asymmetries can affect onset of explosion.
- 3D simulations **still need higher resolution** for convergence.
- Full multi-D neutrino transport versus "ray-by-ray" approximation.
- Uncertain/missing physics?
 Dense-matter nuclear and neutrino physics? Neutrino flavor oscillations?

3. RbR+ vs. FMD-M13D Neutrino Transport

With Robert Glas (PhD student); ApJ 873:45 (2019)

RbR+ vs. FMD-M1 Transport in 2D: 9 & 20 M_{sun} Stars

RbR+ vs. FMD-M1 Transport in 3D: Exploding 9 M Star

Using polar coordinate grid; RbR+ results show minor quantitative and no qualitative differences compared to fully multi-dimensional (FMD-M1) transport.

RbR+ vs. FMD-M1 Transport in 2D and 3D: Exploding 9 M Star

RbR+ vs. FMD-M1 Transport in 3D: Nonexploding 20 M_{sun} Star

Using polar coordinate grid; RbR+ results show moderate quantitative but no qualitative differences compared to fully multi-dimensional (FMD-M1) transport.

RbR+ vs. FMD-M1 Transport in 3D: Nonexploding 20 M_{sun} Star

Relative neutrino-flux variations with direction for electron neutrinos. Time-averaged variations very similar for RbR+ and FMD-M1 transport.

RbR+ vs. FMD-M1 Transport in **3D: Nonexploding** 20 M Star sun

Time-averaged heating rates are very similar in 3D.

 $\left< Q_{\mathrm{E}} \right>_{\theta,\phi} \right) / \left< Q_{\mathrm{E}} \right>_{\theta,\phi} [\%]$

 $Q_{\rm E}$

-150

<u>Summary</u>

- **1.** 3D asymmetries in the pre-collapse progenitor are supportive to explosion, affect explosion asymmetry.
- 2. 3D CCSN simulations with the Garching *Prometheus-Vertex* code tend to converge around 1° angular resolution.
- 3. Dynamical evolution of 3D models does not critically depend on differences of RbR+ and FMD-M1 transport.