FOE 2019, NCSU, May 2019

### Diffuse supernova neutrino background from extensive core-collapse simulations

Shunsaku Horiuchi Center for Neutrino Physics Virginia Tech









### Distance scales and physics outcomes



|                  | Galactic burst                                                                                      | Mini-bursts          | Diffuse signal                                             |
|------------------|-----------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------|
| Physics<br>reach | Explosion mechanism,<br>progenitor properties,<br>multi-messenger<br>astronomy, neutrino<br>physics | supernova<br>variety | Average emission, multi-populations<br>(e.g., black holes) |

### Diffuse Supernova Neutrino Background



# Input 1: neutrinos from core collapse

### Time-integrated neutrinos from core collapse

- Core collapse releases  $\sim$ 3x10<sup>53</sup> erg in neutrinos, of which  $\sim$ 1/6 is in anti- $v_e$
- BH formation goes through high mass accretion  $\rightarrow v$  spectrum hotter (EOS-dep)



Liebendoerfer et al 2004; many studies, e.g., Fischer et al 2009, Sumiyoshi et al 2006, 2007, 2008, 2009, Shunsaku Horiuchi (VT) Nakazato et al 2008, 2010, O'Connor & Ott 2011, ...

### Supernova diversity



Janka 2017; based on Ertl et al (2016); see also Ugliano et al (2012), Sukhbold et al (2016), Pejcha & Thompson (2015), Mueller et al (2016)

Shunsaku Horiuchi (VT)

### Progenitor compactness

#### **Compactness:**

Captures the density structure of the progenitor, which impacts mass accretion evolution

O'Connor & Ott (2011)

- Higher  $\xi \rightarrow$  higher Mdot  $\rightarrow$  BH forms earlier
- Lower  $\xi \rightarrow$  lower Mdot  $\rightarrow$  BH forms later

$$_{M} = \left. \frac{M/M_{\odot}}{R(M_{\text{bary}} = M)/1000 \,\text{km}} \right|_{t}$$



# Explodability

### Compactness: beyond black hole formation time

Compactness does a crude first job separating failed vs explosions.



### Is there a critical compactness?

- 1 compactness predicts at most ~88% of cases
- 2 parameters successful in ~97% of progenitors
- Explosions for  $\xi_{2.5} < 0.15$
- Mixture in between

Mass accretion

VS

**b** heating

Pejcha & Thompson (2015) Ertl et al (2016)

- Critical  $\xi_{2.5} \sim 0.2$  is consistent with axisymmetric simulations
- What is the critical compactness in 3D simulations? TBD.

Horiuchi et al (2014)

Shunsaku Horiuchi (VT)

# Time-integrated neutrino signal

Systematic dependence on compactness Spectral parameters ( $E_{tot}$ ,  $E_{ave}$ ,  $\alpha_{pinch}$ ) from 100+ simulations of ONeMg collapse, Fe core collapse, and collapse to BHs

$$f_{\nu}(E) \propto E^{\alpha} e^{-(\alpha+1)E/E_{\rm av}}$$

$$\rightarrow$$
 (E<sub>tot</sub>, E<sub>ave</sub>,  $\alpha_{pinch}$ )



Horiuchi et al (2018); based on Hudepohl et al (2010), Nakamura et al 2015, Summa et al 2016, others Shunsaku Horiuchi (VT)

### Input 1: mean neutrino emission

#### Mean neutrino emission per supernova

- Include distribution of stellar compactness (by IMF, WHW02 & WH07 suites)
- Include scaling with progenitor compactness (informed by 100+ simulations)
- Distribute NS and BH channels by a critical compactness (parameter)



9

### Diffuse Supernova Neutrino Background



### Input 2: cosmic core-collapse rate

#### Birth rate of massive stars & supernova rate



 Cosmic supernova rates tend to be lower than birth rates: missing supernovae?

e.g., Mannucci et al (2007), Horiuchi et al (2011), Matilla et al (2012), Jencson et al (2019)

 Adopt birth rate as the total core-collapse rate, and assign "missing part" as NS or BH.



Shunsaku Horiuchi (VT)

Updated from Horiuchi et al (2011)

Graur et al (2015) 11

# Input 3: Gadolinium-doped Super-K

#### **Background rejection:**

In water Cherenkov the signal produces a neutron, while backgrounds do not

$$\overline{\nu}_e + p \rightarrow e^+ + n$$
w/out Gd with Gd
Capture on protons,
Signal mostly lost
~18% tagging) Capture on Gd,
yields a coincidence
signal (~90% tagging)

Beacom & Vagins (2004)

After many R&D & tests (EGADS), Super-K drained & refill in 2018, poised to add Gd in end of 2019



EGADS: Evaluating Gadolinium's Action on Detector Systems

### The DSNB detection rate

#### **DSNB** search window & rates



Shunsaku Horiuchi (VT)

Beacom & Vagins (2004)

# The future

### 10+ years with Super-K

Able to eventually measure mean neutrino emission parameters

#### Hyper-Kamiokande

Larger volume, yields sensitivity to small values of critical compactness



Horiuchi et al (2018); also Lunardini (2009), others

### Concluding remarks

Diffuse supernova neutrino background predictions

• We now start to fold in the progenitor-dependent diversity in supernova neutrino emission

There are improving prospects for <u>detection</u>

- Gd upgrade at Super-K delivers signal-limited search
- Future large volume detectors

The signal probes **<u>explosions</u>** / **black hole** formation

• Future high-statistics DSNB probes high BH formation fraction

### BACKUP

Shunsaku Horiuchi (VT)

### Expected timeline for SK-Gd



### Correlations in systematic 2D simulations



### Comparison to Garching models

#### Spectrum per core collapse

Spectral parameters from 18 2D simulations from Summa et al (2016)

$$f_{\nu}(E) \propto E^{\alpha} e^{-(\alpha+1)E/E_{\rm av}}$$

$$\Rightarrow (E_{tot'}, E_{ave'}, \alpha_{pinch})$$



### Searches by Super-Kamiokande



Shunsaku Horiuchi (VT)

# The future

#### **Rate uncertainty**

Will reduce with next-generation supernova surveys (e.g., LSST)

#### Hyper-Kamiokande

Sensitive to small values of critical compactness,  $\xi_{2.5}$  < 0.2



Shunsaku Horiuchi (VT)



Horiuchi et al (2018); also Lunardini (2009), others