The appearance of companion stars after supernovae in binaries

"Ryo"suke Hirai (平井遼介)

JSPS Overseas research fellow

University of Oxford

THE PROMO

OUNDED 19

P

Collaborators: Philipp Podsiadlowski (Oxford) Shoichi Yamada (Waseda) Ning-Chen Sun (Sheffield) Justyn Maund (Sheffield)

UNIVERSITY OF

FOE19 Fifty-one Erg@NCSU 23/5/2019

SOCIA

Progenitor detections

What can it tell us?

Direct progenitor detections are crucial for understanding CCSN progenitors

Merger model for SN1987A

RSG problem

Bersten et al. 2014, Eldridge et al. 2015, RH & Yamada 2015

Companion (non-)detections

Companion detections or non-detections tell us even more

SN1993J

iPTF13bvn

Maund et al. 2004

Progenitor detection + companion detection

Folatelli et al. 2016, Eldridge & Maund 2016, RH 2017a,b

Progenitor detection + companion non-detection

Do companions look the same after supernova?

Ejecta-Companion interaction

ECI simulation

We carried out hydrodynamical simulations of ejecta-companion interaction (ECI)

<u>Code</u>

- Eulerian hydrodynamic code
- HLLC approximate Riemann flux
- 2nd order in space, 3rd order in time
- Hyperbolic self-gravity (RH et al. 2016)

Step 1: 1D simulation of explosion

- Spherically symmetrical grid
- Explosion energy: 10⁵¹, 10⁵²erg
- Ejecta mass: $3.2 M_{\odot}$, $7.1 M_{\odot}$
- Progenitors made with MESA
- Explosion with "thermal bomb" method

Step 2: 2D simulation of ECI

- Cylindrical grid assuming axisymmetry
- Companion mass: 10, 15, $20M_{\odot}$
- Companion radius: $5 9R_{\odot}$
- Orbital separation: 20, 30, 40, $60R_{\odot}$

ECI simulation

ECI simulation

Stripped mass/Impact velocity

 $7.1 M_{\odot}$ ejecta model

3.2M_☉ ejecta model

Mass removal is very minor and won't affect its appearance

Heat injection

The companion star had some energy excess after the simulation

Heat injection efficiency was ~8-12% of intersected energy

Differs depending on stellar structure and separation

Most of the excess energy is distributed around the surface, and declines as it goes deeper into the star

Model for heat injection

Energy transfer efficiency on a solid surface

Model for heat injection

Reduction of cross section

Tracer particles

New model for heat injection

Matches simulated results very well!!

Post-ECI evolution

The companion star can significantly change its appearance after ECI

5.25 4.8MESA $\log(L/L_{\odot})$ 4.6 4.44.24 $1000 \,\mathrm{vrs}$ ∇ 3.84.5 3.9 3.8 3.7 4.6 4_{4} 4.34.24 41 $\log(T_{\rm eff}/{\rm K})$ Total energy excess Heat distribution $\vartheta = \frac{1}{2} \frac{\gamma - 1}{\gamma + 1} \left(\frac{r_{p=p_{\rm ej}(a)}}{R_2} \right)^2 \qquad \dot{\epsilon}(m) = \frac{E_h}{\tau_h m_h} \cdot \frac{\min\left(1, \frac{m_h}{m_h}\right)}{1 + \ln\left(\frac{M_{2,\rm rem}}{m_h}\right)},$

Post-ECI evolution

Surface pollution

Later slower ejecta material can be accreted onto the companion

Companion could be slightly enriched with heavy elements on the surface

Complete list of progenitor/companion non-/detections of stripped-envelope supernovae

About SN2006jc

- Prototype Type Ibn
 - Type Ib supernova with narrow He I emission lines
 - ~30 discovered so far
- Pre-SN outburst observed in 2004
- Host galaxy: UGC 4904
 - Distance: 27.8 ± 1.9 Mpc
- Slight bit of hydrogen at later times

Origin of type Ibn supernovae

2 Binary system scenario

Discovery of a companion

Maund et al. 2016

Can ECI explain the weird companion?

Explosion energy: 10⁵² erg Ejecta mass: 5 Msun →taken from Tominaga et al. 2008

Multi-epoch observations can strongly constrain pre-SN binary parameters

Summary

 Ejecta-companion interaction would not be important even for the most closest binaries in terms of mass removal and impact velocity.

Energy injection by the ejecta can puff up the remaining companion.

 Multi-epoch observations of surviving companions can provide us valuable information on the pre-SN progenitor binary.

 The companion of SN2006jc could be puffed-up due to ejecta-companion interaction.