WAVE HEATING FROM PROTO-NEUTRON STAR CONVECTION AND THE CCSN EXPLOSION MECHANISM

SARAH GOSSAN CALTECH

IN COLLABORATION WITH JIM FULLER (CALTECH) AND LUKE ROBERTS (MSU)

FIFTY-ONE ERGS 2019 NORTH CAROLINA STATE UNIVERSITY 21ST MAY 2019

MOTIVATION — THE CCSN EXPLOSION PROBLEM

- ★ Why do so many simulations fail to explode?
	- ★ Many simulations lie near bifurcation between failed and successful explosions
	- ★ Don't have unlimited computational resources need to implement approximations for source physics
	- ★ Proto-neutron star (PNS) hydrodynamics often not resolved — unclear how this affects the `explodability' of progenitors
	- **★ What are we missing?**

BASIC IDEA

PNS CONVECTION

- \star Use 1D simulations with M1 neutrino transport and mixing-length treatment of convection to follow evolution during first ~1s post-bounce
- ★ Distinguish between convective and radiative zones using buoyancy frequency

WAVE GENERATION

WAVE GENERATION

$\overline{\mathcal{N}}$ WAVE GENERATION

 L_{wave} > many 10^{51} erg/s emitted here through end of simulation

PROPERTIES OF EXCITED WAVES

Angular spectrum unknown

but a good place to start is the convective turnover frequency W_{con}

$$
\omega_{\text{con}} = \frac{\pi v_{\text{con}}}{2 H_{\text{p}}}
$$

CONVECTIVE TURNOVER FREQUENCY *.*0 \overline{N} U E N

G O S

PROPERTIES OF EXCITED WAVES

Angular spectrum unknown

but a good place to start is the convective turnover frequency W_{con}

ωwave ~ ωcon Goldreich & Kumar (1990) Lecoanet & Quataert (2013)

 $\omega_{\text{wave}} \sim$ few 10³ rad/s

PROPERTIES OF EXCITED WAVES

Angular spectrum unknown

Assuming Wwave ~ Wcon GK1990, LQ2013

rcon $\omega_{\rm wave} \sim$ few 10³ rad/s

Consider flat spectrum over angular wave modes up to some critical angular wavenumber la

$$
I_c = \frac{r_{con}}{\Delta r_{con}} \sim 3
$$

PROPERTIES OF EXCITED WAVES **tl;dl1 summary**

Total luminosity in excited waves Angular frequency of excited waves Critical angular wavenumber

Luminosity per excited wave mode

 $L_{\text{wave}} \sim$ many 10⁵¹ erg/s $\omega_{\text{wave}} \sim \omega_{\text{con}}$ \sim few 10³ rad/s $\mathsf{L} \sim 3$ Lwave, $I \sim 10^{51}$ erg/s

1 (too long, didn't listen)

WAVE PROPAGATION

I con ⤳r L_{wave} 1 ~ 10⁵¹ erg/s to the core $r_{sh} \sim 150$ km L_{wave} , $l \sim 10^{51}$ erg/s per excited mode radial wavevector \mathbf{k}_r , \mathbf{l} k_{r} , 1^2 = $(\boldsymbol{\omega}_{\text{wave}}{}^2$ - $|\mathbf{N}^2|)$ $(\boldsymbol{\omega}_{\text{wave}}{}^2$ - $\boldsymbol{\mathsf{L}}_{}|^2)$ $\omega_{\rm wave}^2 c_s^2$ Ll $2 =$ r2 \vert (\vert + 1) c_s^2 Lamb buoyancy frequency frequency waves can propagate where k_{r} , $1^2 > 0$

WAVE PROPAGATION

 $r_{sh} \sim 150$ km

 $\omega_{\text{wave}} > |N|$, L $_{l = 1, ..., l}$ Fraction **T_I**² of incident wave flux transmitted in acoustic waves where $T_1^2 = -2 \int dr |k_{r,1}|$ Total heating rate Lheat $L_{heat} = \sum L_{wave, I} T_I^2$ **l = 1, … , lc**

WAVE PROPAGATION

WAVE HEATING RATES

LIMITATIONS

(1) Uncertainty in the excited wave spectrum

(2) Assumption of linear wave dynamics

(3) Wave damping ignored

(4) Our simulations don't explode!

NEUTRINO DAMPING

CORRECTED HEATING RATES *L* \bigcap \cap T

FOE 2019 // 21ST MAY 2019

R A /

L SHOCK $\overline{}$ \mathbf{A} , WAVE PRESSURE BEHIND THE

SUMMARY

- ★ Motivation: several state-of-the-art supernova simulations find progenitor models evolve close to weak successful explosion/ failed explosion boundary.
- ★ Proposal: effects of wave heating from PNS convection missed if simulation doesn't resolve PNS hydrodynamics could this contribute to shock revival?
- ★ Results: find heating rates of several 1050 erg/s behind the stalled shock out to late times (~1s post-bounce).
- ★ Conclusion: sub-dominant but impactful contribution to shock revival from wave heating from PNS convection — important to account for effects.

SUPPLEMENTARY SLIDES

EXCITED WAVE LUMINOSITY $\sqrt{2}$ *.*5

FREQUENCY DEPENDENCE OF WAVE TRANSMISSION

