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M O T I VAT I O N  —  T H E  C C S N  E X P L O S I O N  
P R O B L E M

★ Why do so many simulations fail to explode? 

★ Many simulations lie near bifurcation between failed and 
successful explosions 

★ Don’t have unlimited computational resources — need to 
implement approximations for source physics 

★ Proto-neutron star (PNS) hydrodynamics often not resolved 
— unclear how this affects the `explodability’ of progenitors  

★ What are we missing? 
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P N S  C O N V E C T I O N
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★ Use 1D simulations with 
M1 neutrino transport and 
mixing-length treatment 
of convection to follow 
evolution during first ~1s 
post-bounce 

★ Distinguish between 
convective and radiative 
zones using buoyancy 
frequency
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 Lwave : energy flux in waves outgoing 

at rcon

 Lwave ~ Lcon Mcon

convective energy 

flux at rcon mach  
number  

Mcon  = vcon / cs  

at rcon
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W AV E  G E N E R AT I O N

Lwave >  many 1051 erg/s 
emitted here through end of 

simulation
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Angular spectrum unknown

P R O P E R T I E S  O F  E X C I T E D  W AV E S
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but a good place to start 

is the convective turnover 
frequency ωcon

π vcon

2 Hp
ωcon  =
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C O N V E C T I V E  T U R N O V E R  F R E Q U E N C Y
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Angular spectrum unknown
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↻ ↻⤳ ⤳ ⤳ ⤳ ⤳ ⤳ ⤳ ⤳ ⤳Lwave  > 1051 erg/s
but a good place to start 

is the convective turnover 
frequency ωcon

ωwave ~ ωcon
Goldreich & Kumar (1990)  

Lecoanet & Quataert (2013)

ωwave ~ few 103 rad/s
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↻ ↻⤳ ⤳ ⤳ ⤳ ⤳ ⤳ ⤳ ⤳ ⤳Lwave  > 1051 erg/s

Angular spectrum unknown
Assuming ωwave ~ ωcon 

ωwave ~ few 103 rad/s
GK1990, LQ2013

Consider flat  spectrum over 
angular wave modes up to some 

critical angular wavenumber lc  

Δrcon

rconlc  = ~ 3
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P R O P E R T I E S  O F  E X C I T E D  W AV E S
tl;dl1  summary

1 (too long, didn’t listen)

Total luminosity in excited waves  

Angular frequency of  

excited waves 

Critical angular wavenumber  

Luminosity per excited wave mode

 Lwave ~ many 1051 erg/s 

ωwave ~ ωcon 

              ~ few 103 rad/s 
       lc ~ 3 
Lwave, l ~ 1051 erg/s
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⤳rcon

r

to the core

⤳ ⤳⤳⤳
rsh ~150 km

Lwave, l ~ 1051 erg/s 
per excited mode

radial wavevector kr , l 

kr , l 2 =    
 (ωwave2 - |N2|)

ωwave2 cs2 

(ωwave2 - Ll2)

Ll2 =
r2  

l (l + 1) cs2    

Lamb  
frequency buoyancy  

frequency

waves can propagate 

where kr , l 2 > 0
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⤳rcon

r

to the core

⤳ ⤳⤳⤳
rsh ~150 km

Lwave, l ~ 1051 erg/s 
per excited mode

ωwave > |N| , L l = 1, …, lc 

Fraction Tl 2 of incident 
wave flux transmitted in 
acoustic waves where

Tl 2  = -2   dr | kr , l |    ∫
Total heating rate Lheat 

Lheat = ∑  Lwave, l Tl 2

 l = 1, … , lc
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L I M I TAT I O N S

(1)  Uncertainty in the excited wave spectrum 

(2) Assumption of linear wave dynamics 

(3) Wave damping ignored 

(4) Our simulations don’t explode!
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S U M M A R Y

★Motivation: several state-of-the-art supernova simulations find 
progenitor models evolve close to weak successful explosion/
failed explosion boundary. 

★ Proposal: effects of wave heating from PNS convection 
missed if simulation doesn’t resolve PNS hydrodynamics — 
could this contribute to shock revival? 

★ Results: find heating rates of several 1050 erg/s behind the 
stalled shock out to late times (~1s post-bounce). 

★ Conclusion: sub-dominant but impactful contribution to shock 
revival from wave heating from PNS convection — important 
to account for effects.
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S U P P L E M E N TA R Y  S L I D E S
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E X C I T E D  W AV E  L U M I N O S I T Y
3.8

4.0

4.2

4.4

4.6

v c
o
n
v
[1

08
cm

s�
1
]

200 300 400 500 600

Time after core bounce [ms]

0

2

4

6

` c

1.5

2.5

3.5

!
co

n
v
[1

03
ra

d
s�

1
]

0.5

1.5

2.5

L
w

a
v
es

,
`
[1

05
1
er

g
s�

1
]



F O E  2 0 1 9  / /  2 1 S T  M AY  2 0 1 9S A R A H  G O S S A N

F R E Q U E N C Y  D E P E N D E N C E  O F  
W AV E  T R A N S M I S S I O N
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