The *r*-process from neutron star mergers

Fifty-One Ergs May 20 2019

Jennifer Barnes NASA Einstein Fellow Columbia University

The *r*-process produces ~half of elements heavier than Fe

		В	Big Bang			CCSNe				the r-process							
H		\sim				; / -			53			He					
Ļi	Be	B C													0	F	Ne
Na	Mg 12	s-process (AGBs) synthetic											Si 14	P 15	S 16	CI 17	Ar
K 19	Ca 20	Sc 21	Ti 22	V 23	Cr 24	Mn 25	Fe 26	C0 27	Ni 28	Cu 29	Zn 30	Ga 31	Ge 32	As 33	Se 34	Br 35	Kr 36
Rb 37	Sr 38	Y 39	Zr 40	Nb 41	Mo 42	Tc 43	Ru 44	Rh 45	Pd 48	Ag	Cd 48	In 49	Sn	Sb 51	Te 52	 53	Xe 54
Cs 55	Ba	0	Hf 72	Ta 73	W 74	Re 75	Os 76	lr 77	Pt 78	Au 79	Hg 80	TI 81	Pb 82	Bi	Po 84	At 85	Rn 86
Fr	Ra	~		~	_		-	~			-	-		_	-	10	
8/	88		La 57	Ce 58	59 Pr	Nd 60	Pm 61	Sm 62	EU 63	Gd 64	1b 65	Dy 66	H0 67	Er 68	1m 69	70	Lu 71
			Ac 89	Th 90	Pa 91	U 92	Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103

The *r*-process produces ~half of elements heavier than Fe

final few orbits: strong GW source

final few orbits: strong GW source

merger: neutron star is partially disrupted, central remnant forms

Image credit: Daniel Price (U/Exeter) and Stephan Rosswog (Int. U/Bremen)

final few orbits: strong GW source

merger: neutron star is partially disrupted, central remnant forms

ejecta: some material escapes; some is bound

Image credit: Daniel Price (U/Exeter) and Stephan Rosswog (Int. U/Bremen)

final few orbits: strong GW source

merger: neutron star is partially disrupted, central remnant forms

final: a central NS or BH, an accretion disk, unbound ejecta

ejecta: some material escapes; some is bound

The explosive *r*-process: a summary

Nuclear Statistical Equilibrium

 $T \gtrsim 6 \times 10^9 \,\mathrm{K}$

Composition depends on state variables, not on reaction rates

The explosive *r*-process: a summary

The explosive *r*-process: a summary

QSE Freeze-out and the start of an *r*-process $T \approx 2 - 4 \times 10^9 \text{ K}$

Changes to the composition are driven by n-capture Final composition set by <A>, R_{n/s} Quasi-Statistical Equilibrium $T < 6 \times 10^9 \text{ K}$

Nuclear Statistical Equilibrium $T\gtrsim 6 imes 10^9~{
m K}$

The explosive r-process: a movie

The explosive r-process: a movie

Kilonovae are radioactive transients powered by the *r*-process decay

Nucleosynthesis + Opacity

Composition, opacity, and color I

The opacity of certain *r*-process elements (lanthanides and actinides) is very high

Composition, opacity, and color II

higher opacities \longrightarrow longer, dimmer, redder light curves diffusion time: $t_{\text{diff}} \sim \kappa^{1/2}$ adiabatic losses: $E_{\text{phot}} \sim t^{-1}$ line blanketing at optical wavelengths

Composition, opacity, and color III Outcomes of the *r*-process

Composition, opacity, and color III Outcomes of the *r*-process

fewer weak interactions ← → more weak interactions

Composition, opacity, and color III Outcomes of the *r*-process

Radioactivity + Luminosity

Generic radioactive transient $\dot{E}_{\rm rad}$ **Energy from** 3olometric Luminosity [erg s⁻¹] radioactivity $\propto M_{\rm ei}$ E_{therm} **Energy converted** to photons Light curve is a function of $E_{\rm therm}$

Generic radioactive transient $\dot{E}_{\rm rad}$ **Energy from** 3olometric Luminosity [erg s⁻¹] radioactivity $\propto M_{\rm ei}$ E_{therm} **Energy converted** to photons Light curve is a function of $E_{\rm therm}$

Thermalization and luminosity II *R*-process heating is variable

Thermalization and luminosity II Luminosity — thermalization — radioactivity

Thermalization and luminosity III Constraints from bolometric luminosity

I. The more we know about the nuclear physics underlying *r*-process, the more accurately we can measure $M_{\rm ej}$

Thermalization and luminosity III Constraints from bolometric luminosity

I. The more we know about the nuclear physics underlying *r*-process, the more accurately we can measure $M_{\rm ej}$

II. What we *already* know about heating and thermalization may allow us to detect the signatures of particular isotopes in kilonova emission

Thank you!

Questions?